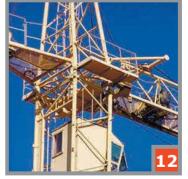


РЕШЕТЧАТЫЙ НАСТИЛ

Содержание

Общая информация	. 4
Области применения Функциональные преимущества Основные термины и определения Типы обрамлений Рекомендуемые способы укладки решёток на опорах	.7 8 .9
Прессованный решетчатый настил	10
Рекомендации по заказу прессованного настилаПример заказа прессованного настилаТаблицы нагрузок для прессованных решеток из сталиТаблицы нагрузок для прессованных решеток из алюминияТаблицы для рассчета нагрузки в зависимости от шага ячеек	12 14 16 18
Прессовано-сварной решетчатый настил	20
Сварной решетчатый настил	21
Рекомендации по заказу сварного настилаПример заказа сварного настилаТаблицы нагрузок для сварных решеток	22
Специальные формы решеток	26
Производственные возможности	27
Крепеж	28
Профилированные решетки	29
Таблицы нагрузок профилированных решеток	30
Полимерный настил GFK	. 38
КреплениеТаблицы нагрузок для GFK	42 44
Инновации в применении ячеистой решетки: архитектура и дизайн	. 50
Лестничные конструкции	54
Прямые лестницы, ступени	55 56

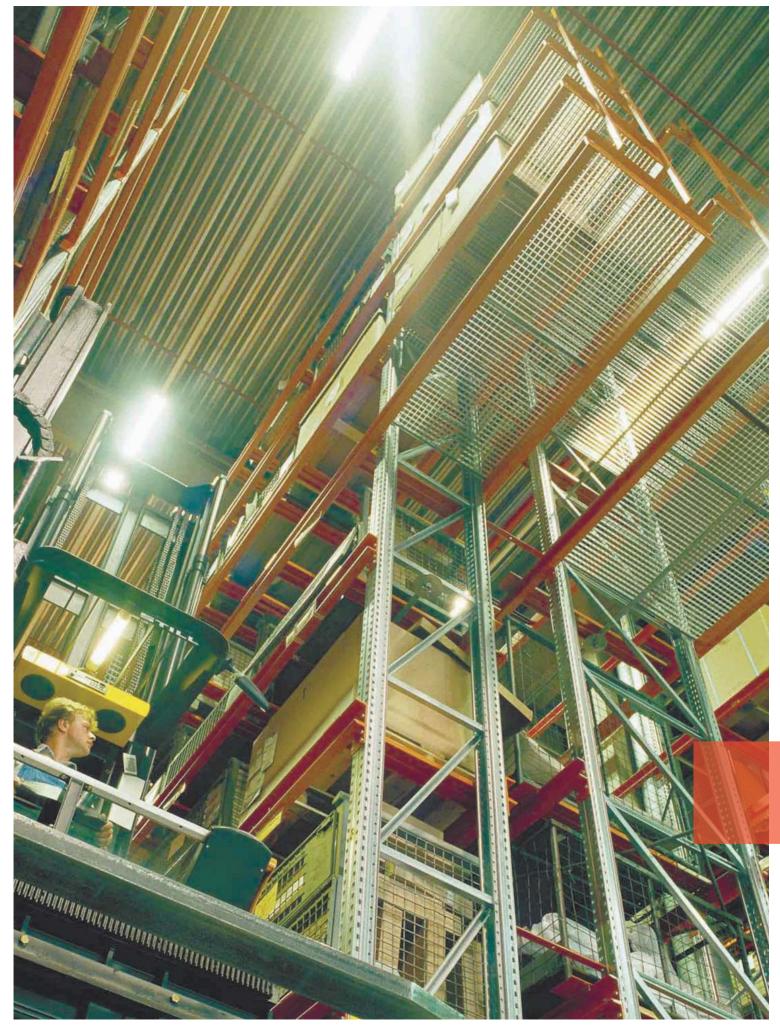
Области применения



Решетчатый настил

Все, что создано руками человека – является отражением эволюции не только человечества, но и эволюции технологий во всех сферах его жизнедеятельности. Инновационные материалы позволяют проектировать и производить монтаж различных конструкций в несколько раз быстрее, да и сами конструкции стали намного легче, не теряя при этом запаса прочности. Могли бы Вы навскидку сказать: конструкции из какого материала имеют прочность бетона; светопроницаемы, как стекло, и при этом имеют вес в несколько раз меньше, чем бетон? Впрочем, хватит загадок. Речь идет о решетчатом настиле.

Несмотря на то, что поверхность ячеистой решетки более чем на 80% состоит из отверстий, или ячеек, - это очень стабильная поверхность. Мы просто используем тот факт, что поставленная вертикально, и прочно закрепленная полоса стали выдерживает весьма значительную нагрузку.


Применение решетчатого настила ничем не ограничивается. Он применяется во всех сферах промышленного и гражданского строительства, а так же в архитектуре и современных дизайнерских решениях.

Из ячеистых решеток конструируют промышленные платформы и площадки, перекрытия, эстакады, ступени для лестниц, пешеходные переходы и зоны для проезда транспорта, ограждения, складские стеллажные покрытия. Конструкции из решетчатого настила положительно зарекомендовали себя в качестве дизайнерских решений, в элементах фасадов современных зданий и сооружений.

Примеры применения:

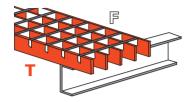
- Промышленное и гражданское строительство: элементы фасадов зданий;
- Складские помещения, логоцентры, стационарные стеллажи;
- Спортивные и развлекательные сооружения;
- Различные виды внутренних, пожарных и винтовых лестниц;
- Химическая промышленность и очистные сооружения;
- Платформы в газо- и нефтеперерабатывающей отрасли;
- Сельское хозяйство (животноводство);
- В Судостроительная промышленность;
- 9 Изготовление промышленных платформ, площадок и переходных мостиков;
- В условиях с риском скольжения (для любых климатических условий);
- элементы входной группы в здания с большой проходимостью;
- 12 Площадки подъемных кранов;
- Тротуары металлические мосты;
- Прикрытие отводных каналов;
- 15 Промышленные полы.

Функциональные преимущества:

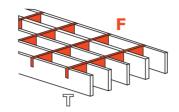
- По затратам материала, решетчатый настил имеет поразительно высокие статические качества, что позволяет ему, при эксплуатации в любых климатических условиях, выдерживать расчетные нагрузки.
- Эстетичность и гармония конструкций впервые доказано Густавом Эйфелем при строительстве Эйфелевой башни, и в дальнейшем неоднократно подтверждено в мировой архитектуре.
- Снижение затрат, в сравнении с аналогично прочной и стабильной поверхностью, изготовленной из других материалов.
- Основным преимуществом является лёгкий и быстрый монтаж больших поверхностей, да и демонтаж не представляет собой больших проблем, если вдруг по каким-либо причинам, потребуется открыть поверхность.
- «прозрачность» многоярусных складских конструкций, незаменимая в складской логистике.
- Горячее цинкование конструкций защищает от коррозии значительно дольше, чем покраска металлоконструкций на объекте строительства.

Склад с высотными стеллажами фирмы «Porsche» в Зальцбурге демонстрирует это преимущество: Оператор крана имеет возможность распознать снизу, что стоит на стеллажах.

Помимо функциональных преимуществ, предлагаемый нами решетчатый настил обладает рядом преимуществ материального характера. Для получения таких же статических значений и крепости конструкций при помощи других материалов, или другой формы (например - бетон), придётся вложить значительно больше денег. Возьмите хотя бы представленный на фото пример здания для парковки: такой же фасад из стекла (прозрачный) или бетона (прочный) стоил бы в несколько раз дороже конструкции из ячеистых решёток. Таким образом, вес возводимой конструкции может быть снижен в разы, что влечёт за собой уменьшение нагрузок на опорные части, а значит, сами опоры и фундаменты будут сильно облегчены.


Решетчатый настил имеет различия в технологии изготовления; цвете, фактуре, материале, из которого его изготавливают; сфере применения. Но все виды решетчатого настила объединяет одно: надежность и прочность.

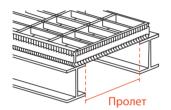
Все стальные решётчатые настилы подразделяются на два основных вида, прессованный и сварной. В прессованном решётчатом настиле связующие элементы выполняются из металлических полос, запрессованных в несущие элементы. В сварном решётчатом настиле связующие элементы выполняются в виде витого прутка приваренного к несущим полосам.


Основные термины и определения

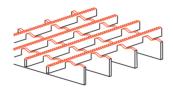
Несущие полосы (Т)

Полосы принимающие на себя нагрузку обязательно должны операться на несущие конструкции

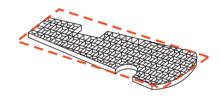
Связующие полосы (F)


Полосы проходящие поперек несущих полос и соединяющая их друг с другом. Нагрузку не несет.

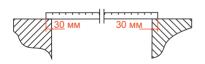
Размеры ячеек


Расстояние между несущими и связующими.

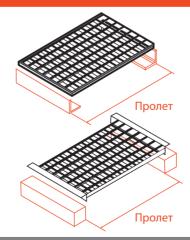
Пролёт


Расстояние между двумя опорами.

Противоскольжение


При использовании решёток на участках с высокой опасностью поскользнуться, рекомендуется использование зубьев противоскольжения. Могут наноситься на несущие и связующие

Вырезы


Сектора, косые срезы или вырезы по краям и внутри решётки. Если длина вырезов меньше полуметра, то речь идет о минивырезах.

Опоры решёток

Лежащая на опоре длина концов несущих полос должна соответствовать высоте несущих полос, но не менее 30мм.

Размер проёма

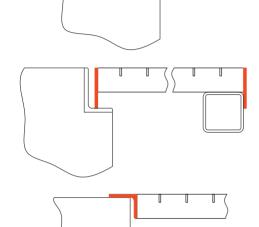
Внутренние размеры между опорами. Размер решётки должен быть на 4-8 мм меньше чем линейные размеры проема.

Кант противоскольжения и боковые части ступени

Противоскользящий кант приварен к внешней части ступеней. Он предотвращает возможность поскользнуться и увеличивает несущую способность. Боковые части ступеней с отверстиями служат для крепления ступеней при помощи болтов к боковым планкам.

Типы обрамлений

Тип А

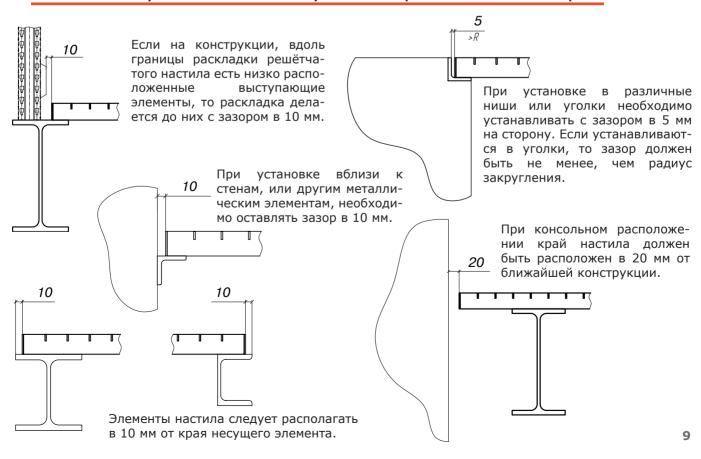

Стандартный тип обрамления. Высота обрамления равна высоте несущей полосы. В решётках с толщиной несущей полосы 2 и 3 мм и высотой до 60 мм может бы использовано Т-образное обрамление.

Тип В

Используется в качестве защитного ребра на площадках технического обслуживания.

Тип С

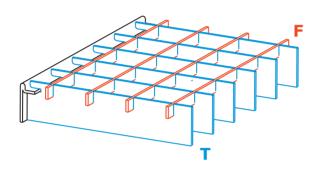
Высота обрамления ниже на 5 мм высоты несущей полосы. Применяется при установке в уголки и прочие закруглённые поверхности.


Тип D

Используется в случаях, если высота несущей полосы ниже высоты опорного профиля, либо в качестве стопорного элемента.

Тип Е

В качестве обрамления используется уголок.


Рекомендуемые способы укладки решёток на опорах

Прессованный решетчатый настил

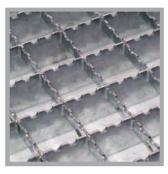
Прессованный настил изготавливается по европейскому стандарту DIN 24537 путём холодного запрессовывания связующей полосы в специально изготовленные для этого пазы несущей полосы под высоким давлением. Структура переплетения металлических полос определяется в основном делением ячеек, причём несущие полосы (Т) и связующие полосы (F) могут иметь различный шаг. Под размером ячеек понимается размер просвета между несущими и связующими полосами.

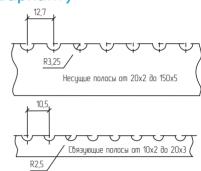
Прессованные решётки обычно изготавливаются из стали, нержавеющей стали, алюминия - по желанию заказчика. Технология производства решетчатого настила обеспечивает равномерную и точную структуру ячеек. Край прессованных решёток обрамляется специальным Т-образным профилем, или полосой. Несущим элементом прессованного настила является наиболее массивная полоса, которая и определяет длину всей конструкции. Связующаяпролоса только фиксирует положение несущей полосы, и нагрузку не несет.

Несущие полосы – это принимающие на себя нагрузку и стоящие вертикально полосы из плоской жести, располагающиеся параллельно на расстоянии друг от друга от опоры к опоре.

Связующие полосы проходят поперёк несущих полос и соединяют их друг с другом путём запрессовки (или приварки) в точках пересечения.

Опоры ячеистых решёток: лежащая на опоре длина концов несущих полос. Она должна соответствовать высоте несущих полос, однако должна быть не менее 30 мм.



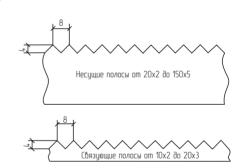


Обрамление по краю приваривается к решётке под прямым углом заподлицо с поверхностью методом контактной сварки на автоматическом станке, предназначенном для приварки обрамления. Более подробно о видах обрамления читайте на стр 9.

Для использования на участках с высокой опасностью поскользнуться мы рекомендуем несущие и/или связующие полосы в варианте с защитой от скольжения. Элементы противоскольжения могут наноситься как отдельно на несущих или связующих полосах, так и на обеих одновременно.

Тип SR4 (Стандартный вариант)

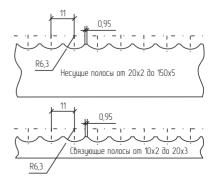




 $\mathsf{SR40}$ — выпиловка выемок противоскольжения одновременно на несущих и связующих полосах.

SR41 — выпиловка выемок противоскольжения только на несущих полосах. SR42 — выпиловка выемок противоскольжения только на связующих полосах.

Тип SR2 (Зуб пилы)



SR20 — выпиловка зубьев противоскольжения одновременно на несущих и связующих полосах.

SR21 — выпиловка зубьев противоскольжения только на несущих полосах. SR22 — выпиловка зубьев противоскольжения только на связующих полосах.

Тип SD (Суперзащита)

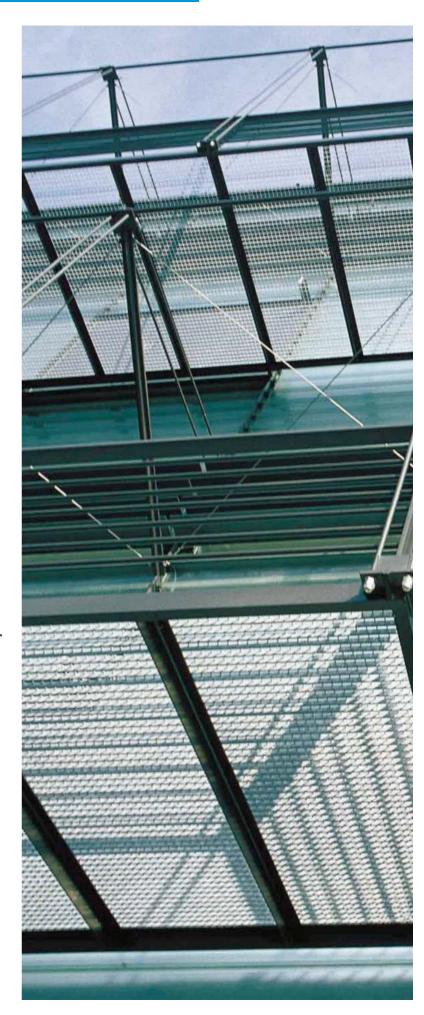
 ${\sf SD}$ — выпиловка зубьев противоскольжения одновременно на несущих, связующих и обрамляющих полосах.

Рекомендации по заказу прессованного настила

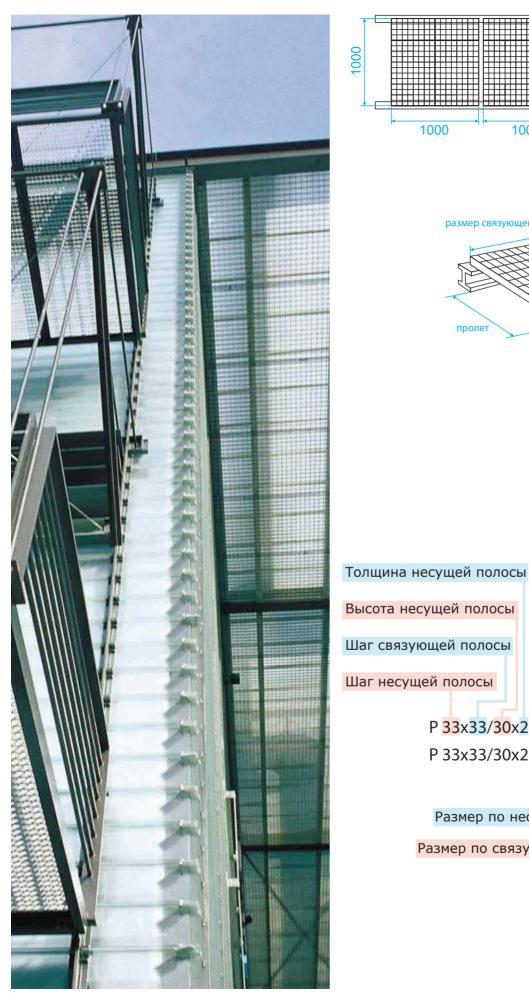
При выборе любого типа решётчатого настила необходимо учитывать ориентирование решёток относительно опор. Они должны располагаться перпендикулярно движению и опираться концами на несущие элементы опорной конструкции (балки, швеллера, уголка и т.п.). Минимальная величина опоры равна высоте несущей полосы, но не менее 30 мм.

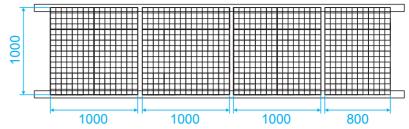
При выборе габаритных размеров прессованного решётчатого настила необходимо учитывать:

- оптимальный размер 1000x1000 мм.,
- максимальный рекоммендуемый размер 2000х2000 мм.,
- в отдельных случаях настил может быть изготовлен большего размера (необходимо уточнить при заказе).


Пример заказа прессованного настила

В случае необходимости закрыть площадь 1000 x 3800 мм, где первый размер — 1000 мм. - расстояние между опорами, рекомендуется использовать 4 прессованные решётки: 3 шт. размером по связующей полосе 1000 мм и 1 шт. 800 мм.


Таким образом, для покрытия площади размером 1000 x 3800 мм необходимы прессованные решётки:


1000 x 1000 мм — 3 шт. (где первый размер — длина несущей полосы, а второй — длина связующей полосы).

 1000×800 мм — 1 шт. (где 1000 мм — длина несущей полосы, 800 мм длина связующей полосы).

Тип зубьев противоскольжения:

_ - отсутствует

SR4 - «Стандартный вариант»

SR2 - «Зуб пилы»

SD - «Суперзащита»

Варианты нанесения:

0 - на несущих и на связующих

1 - только на несущих

2 - только на связующих

Материал защитного покрытия

P 33x33/30x2 SR40, Zn

Высота несущей полосы

Шаг связующей полосы

Шаг несущей полосы

3 шт. 1000х1000

P 33x33/30x2 SR40, Zn

1 шт. 1000х800

Количество

Размер по несущей полосе

Размер по связующей полосе

Таблицы нагрузок для прессованных решеток из стали

	He	сущи	е по	олосі	ol (M	м)											
	20	x 2	25	x 2	30	x 2	35	x 2	40) x 2	50	x 2	25	x 3	30	x 3	35
	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P
Ī	3,58	51,20	5,55	80,00	7,92	115,20	10,68	156,80	13,82	204,80	21,19	320,00	8,33	120,00	11,88	172,80	16,02
	2,39	28,80	3,70	45,00	5,28	64,80	7,12	88,20	9,22	115,20	14,13	180,00	5,55	67,50	7,92	97,20	10,68
	1,79	18,43	2,78	28,80	3,96	41,47	5,34	56,45	6,91	73,73	10,60	115,20	4,16	43,20	5,94	62,21	8,01
	1,43	12,80	2,22	20,00	3,17	28,80	4,27	39,20	5,53	51,20	8,48	80,00	3,33	30,00	4,75	43,20	6,41
	1,19	9,40	1,85	14,69	2,64	21,16	3,56	28,80	4,61	37,62	7,06	58,78	2,78	22,04	3,96	31,74	5,34
	0,91	6,30	1,59	11,25	2,26	16,20	3,05	22,05	3,95	28,80	6,05	45,00	2,38	16,88	3,40	24,30	4,58
	0,71	4,42	1,38	8,64	1,98	12,80	2,67	17,42	3,46	22,76	5,30	35,56	2,07	12,96	2,97	19,20	4,00
	0,58	3,23	1,11	6,30	1,76	10,37	2,37	14,11	3,07	18,43	4,71	28,80	1,67	9,45	2,64	15,55	3,56
	0,47	2,42	0,92	4,73	1,57	8,18	2,14	11,66	2,76	15,23	4,24	23,80	1,38	7,10	2,36	12,27	3,20
	0,40	1,87	0,77	3,65	1,32	6,30	1,94	9,80	2,51	12,80	3,85	20,00	1,15	5,47	1,98	9,45	2,91
	0,34	1,47	0,65	2,87	1,12	4,96	1,76	7,87	2,30	10,91	3,53	17,04	0,98	4,30	1,68	7,43	2,64
	0,29	1,18	0,56	2,30	0,96	3,97	1,52	6,30	2,13	9,40	3,26	14,69	0,84	3,44	1,45	5,95	2,27
	0,25	0,96	0,49	1,87	0,84	3,23	1,32	5,12	1,95	7,65	3,03	12,80	0,73	2,80	1,26	4,84	1,98
	0,22	0,79	0,43	1,54	0,74	2,66	1,16	4,22	1,71	6,30	2,83	11,25	0,65	2,31	1,11	3,99	1,74
	0,20	0,66	0,38	1,28	0,65	2,22	1,03	3,52	1,52	5,25	2,65	9,97	0,57	1,92	0,98	3,32	1,54
	0,18	0,55	0,34	1,08	0,58	1,87	0,91	2,96	1,35	4,42	2,49	8,64	0,51	1,62	0,87	2,80	1,37
	0,16	0,47	0,30	0,92	0,52	1,59	0,82	2,52	1,21	3,76	2,32	7,35	0,46	1,38	0,78	2,38	1,23
	0,14	0,40	0,27	0,79	0,47	1,36	0,74	2,16	1,09	3,23	2,10	6,30	0,41	1,18	0,71	2,04	1,11

Te [MM]	Несущие полосы (мм)																
тоян ами _*	60	x 4	70	x 4	80	x 4	90	x 4	30	x 5	35	x 5	40 :	< 5	50	x 5	60
Расстояние между опорами∗ [м	F _P	F_V	F_{P}	F_V	F_{P}	F_V	F_P	F_V	F_{P}	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P
300	59,93	921,60	79,97	1254,40	102,36	1638,40	127,06	2073,60	19,81	288,00	26,70	392,00	34,56	512,00	52,98	800,00	74,91
400	39,95	518,40	53,31	705,60	68,24	921,60	84,71	1166,40	13,20	162,00	17,80	220,50	23,04	288,00	35,32	450,00	49,94
500	29,96	331,78	39,98	451,58	51,18	589,82	63,53	746,50	9,90	103,68	13,35	141,12	17,28	184,32	26,49	288,00	37,45
600	23,97	230,40	31,99	313,60	40,94	409,60	50,82	518,40	7,92	72,00	10,68	98,00	13,82	128,00	21,19	200,00	29,96
700	19,98	169,27	26,66	230,40	34,12	300,93	42,35	380,87	6,60	52,90	8,90	72,00	11,52	94,04	17,66	146,94	24,97
800	17,12	129,60	22,85	176,40	29,25	230,40	36,30	291,60	5,66	40,50	7,63	55,13	9,87	72,00	15,14	112,50	21,40
900	14,98	102,40	19,99	139,38	25,59	182,04	31,76	230,40	4,95	32,00	6,67	43,56	8,64	56,89	13,25	88,89	18,73
000	13,32	82,94	17,77	112,90	22,75	147,46	28,24	186,62	4,40	25,92	5,93	35,28	7,68	46,08	11,77	72,00	16,65
1100	11,99	68,55	15,99	93,30	20,47	121,86	25,41	154,23	3,93	20,45	5,34	29,16	6,91	38,08	10,60	59,50	14,98
200	10,90	57,60	14,54	78,40	18,61	102,40	23,10	129,60	3,29	15,75	4,85	24,50	6,28	32,00	9,63	50,00	13,62
300	9,99	49,08	13,33	66,80	17,06	87,25	21,18	110,43	2,80	12,39	4,40	19,67	5,76	27,27	8,83	42,60	12,48
1400	9,22	42,32	12,30	57,60	15,75	75,23	19,55	95,22	2,41	9,92	3,79	15,75	5,32	23,51	8,15	36,73	11,52
1500	8,56	36,86	11,42	50,18	14,62	65,54	18,15	82,94	2,10	8,06	3,30	12,81	4,88	19,11	7,57	32,00	10,70
1600	7,99	32,40	10,66	44,10	13,65	57,60	16,94	72,90	1,84	6,64	2,90	10,55	4,28	15,75	7,06	28,13	9,99
1700	7,49	28,70	10,00	39,06	12,79	51,02	15,88	64,58	1,63	5,54	2,56	8,80	3,79	13,13	6,62	24,91	9,36
1800	7,05	25,60	9,41	34,84	12,04	45,51	14,95	57,60	1,45	4,67	2,28	7,41	3,38	11,06	6,23	21,60	8,81
1900	6,66	22,98	8,89	31,27	11,37	40,85	14,12	51,70	1,30	3,97	2,05	6,30	3,03	9,41	5,81	18,37	8,32
2000	6,31	20,74	8,42	28,22	10,77	36,86	13,37	46,66	1,18	3,40	1,85	5,40	2,73	8,06	5,24	15,75	7,89

^{*} Расстояние между опорами = ширина в просвете между опорами

Коэффицент пересчета из кг в кН: 10 кH = 1 тонна; 1 кH = 100 кг

Мы рекомендуем заказывать решетки, по которым осуществляется движение автотранспорта, с толщиной несущей полосы не менее 4 - 5 мм

Представленные в таблицах значения рассчитаны на основании их максимально допустимых значений несущей способности (Прогиб I/200). При этом в основу положена поверхность расположения груза в 200 х 200 мм и деление несущих полос в 33,3 мм. Во избежание возникновения мест, о которые можно споткнуться, возникающее под единичным грузом прогибание не должно превышать 4 мм.

x 3	40	x 3	50	x 3	60	x 3	70	x 3	30	x 4	35 >	(4	40	x 4	45	x 4	50) x 4
F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V										
235,20	20,74	307,20	31,79	480,00	44,95	691,20	59,98	940,80	15,85	230,40	21,36	313,60	27,65	409,60	34,68	518,40	42,38	640,00
132,30	13,82	172,80	21,19	270,00	29,96	388,80	39,98	529,20	10,56	129,60	14,24	176,40	18,43	230,40	23,12	291,60	28,26	360,00
84,67	10,37	110,59	15,89	172,80	22,47	248,83	29,99	338,69	7,92	82,94	10,68	112,90	13,82	147,46	17,34	186,62	21,19	230,40
58,80	8,29	76,80	12,72	120,00	17,98	172,80	23,99	235,20	6,34	57,60	8,54	78,40	11,06	102,40	13,87	129,60	16,95	160,00
43,20	6,91	56,42	10,60	88,16	14,98	126,96	19,99	172,80	5,28	42,32	7,12	57,60	9,22	75,23	11,56	95,22	14,13	117,55
33,08	5,92	43,20	9,08	67,50	12,84	97,20	17,14	132,30	4,53	32,40	6,10	44,10	7,90	57,60	9,91	72,90	12,11	90,00
26,13	5,18	34,13	7,95	53,33	11,24	76,80	14,99	104,53	3,96	25,60	5,34	34,84	6,91	45,51	8,67	57,60	10,60	71,11
21,17	4,61	27,65	7,06	43,20	9,99	62,21	13,33	84,67	3,52	20,74	4,75	28,22	6,14	36,86	7,71	46,66	9,42	57,60
17,49	4,15	22,85	6,36	35,70	8,99	51,41	12,00	69,98	3,14	16,36	4,27	23,33	5,53	30,47	6,94	38,56	8,48	47,60
14,70	3,77	19,20	5,78	30,00	8,17	43,20	10,90	58,80	2,63	12,60	3,88	19,60	5,03	25,60	6,31	32,40	7,71	40,00
11,80	3,46	16,36	5,30	25,56	7,49	36,81	10,00	50,10	2,24	9,91	3,52	15,74	4,61	21,81	5,78	27,61	7,06	34,08
9,45	3,19	14,11	4,89	22,04	6,91	31,74	9,23	43,20	1,93	7,93	3,03	12,60	4,25	18,81	5,34	23,80	6,52	29,39
7,68	2,93	11,47	4,54	19,20	6,42	27,65	8,57	37,63	1,68	6,45	2,64	10,24	3,90	15,29	4,95	20,74	6,05	25,60
6,33	2,57	9,45	4,24	16,88	5,99	24,30	8,00	33,08	1,47	5,32	2,32	8,44	3,43	12,60	4,62	17,94	5,65	22,50
5,28	2,28	7,88	3,97	14,95	5,62	21,53	7,50	29,30	1,30	4,43	2,05	7,04	3,03	10,50	4,28	14,96	5,30	19,93
4,45	2,03	6,64	3,74	12,96	5,29	19,20	7,06	26,13	1,16	3,73	1,83	5,93	2,70	8,85	3,82	12,60	4,99	17,28
3,78	1,82	5,64	3,49	11,02	4,99	17,23	6,66	23,45	1,04	3,17	1,64	5,04	2,43	7,52	3,42	10,71	4,65	14,70
3,24	1,64	4,84	3,14	9,45	4,73	15,55	6,31	21,17	0,94	2,72	1,48	4,32	2,19	6,45	3,09	9,19	4,19	12,60

x 5	70	x 5	80	x 5	90 x 5		1 <u>0</u> 0	0 x 5	110	x 5	120	x 5	130) x 5	140) x 5	150	x 5
F_V	F _P	F_V	F _P	F_V	F _P	F_V	F_P	F_V	F _P	F_V	F _P	F_V	F_P	F_V	F_P	F_V	F _P	F_V
52,00	99,96	1568,00	127,95	2048,00	158,82	2592,00	192,00	3200,00	232,32	3872,00	276,48	4608,00	324,48	5408,00	376,32	6272,00	432,00	7200,00
648,00	66,64	882,00	85,30	1152,00	105,88	1458,00	128,00	1800,00	154,88	2178,00	184,32	2592,00	216,32	3042,00	250,88	3528,00	288,00	4050,00
4,72	49,98	564,48	63,97	737,28	79,41	933,12	96,00	1152,00	116,16	1393,92	138,24	1658,88	162,24	1946,88	188,16	2257,92	216,00	2592,00
288,00	39,98	392,00	51,18	512,00	63,53	648,00	76,80	800,00	92,93	968,00	110,59	1152,00	129,79	1352,00	150,53	1568,00	172,80	1800,00
211,59	33,32	288,00	42,65	376,16	52,94	476,08	64,00	587,76	77,44	711,18	92,16	846,37	108,16	993,31	125,44	1152,00	144,00	1322,45
162,00	28,56	220,50	36,56	288,00	45,38	364,50	54,86	450,00	66,38	544,50	78,99	648,00	92,71	760,50	107,52	882,00	123,43	1012,50
128,00	24,99	174,22	31,99	227,56	39,71	288,00	48,00	355,56	58,08	430,22	69,12	512,00	81,12	600,89	94,08	696,89	108,00	800,00
103,68	22,21	141,12	28,43	184,32	35,29	233,28	42,67	288,00	51,63	348,48	61,44	414,72	72,11	486,72	83,63	564,48	96,00	648,00
85,69	19,99	116,63	25,59	152,33	31,76	192,79	38,40	238,02	46,46	288,00	55,30	342,74	64,90	402,25	75,26	466,51	86,40	535,54
72,00	18,17	98,00	23,26	128,00	28,88	162,00	34,91	200,00	42,24	242,00	50,27	288,00	59,00	338,00	68,42	392,00	78,55	450,00
61,35	16,66	83,50	21,32	109,07	26,47	138,04	32,00	170,41	38,72	206,20	46,08	245,40	54,08	288,00	62,72	334,01	72,00	383,43
52,90	15,38	72,00	19,68	94,04	24,43	119,02	29,54	146,94	35,74	177,80	42,54	211,59	49,92	248,33	57,90	288,00	66,46	330,61
46,08	14,28	62,72	18,28	81,92	22,69	103,68	27,43	128,00	33,19	154,88	39,50	184,32	46,35	216,32	53,76	250,88	61,71	288,00
40,50	13,33	55,13	17,06	72,00	21,18	91,13	25,60	112,50	30,98	136,13	36,86	162,00	43,26	190,13	50,18	220,50	57,60	253,13
35,88	12,50	48,83	15,99	63,78	19,85	80,72	24,00	99,65	29,04	120,58	34,56	143,50	40,56	168,42	47,04	195,32	54,00	224,22
32,00	11,76	43,56	15,05	56,89	18,69	72,00	22,59	88,89	27,33	107,56	32,53	128,00	38,17	150,22	44,27	174,22	50,82	200,00
28,72	11,11	39,09	14,22	51,06	17,65	64,62	21,33	79,78	25,81	96,53	30,72	114,88	36,05	134,83	41,81	156,37	48,00	179,50
25,92	10,52	35,28	13,47	46,08	16,72	58,32	20,21	72,00	24,45	87,12	29,10	103,68	34,16	121,68	39,61	141,12	45,47	162,00

участок не предназначен для пешеходов

участок по которому можно ходить

участок для проезда транспорта

общей массой до 3 тонн

участок для проезда транспорта
общей массой до 9 тонн

участок для проезда транспорта общей массой до 30 тонн

Условные обозначения нагрузок

госредоточенная нагрузка на поверхность 200х200 груз в кН

 F_V равномерно распределенная нагрузка в к H/m^2

Таблицы нагрузок для прессованных решеток из алюминия

Расстояние между опорами* [мм]
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

2000

Hed	сущиє	е пол	осы (мм)										
25	x 2	30	x 2	35	x 2	40	x 2	45	5 x 2	50) x 2	2	5 x 3	30
F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P
4,39	63,25	6,26	91,08	8,44	123,97	10,93	161,92	13,71	204,93	16,75	253,00	6,58	94,88	9,40
2,63	33,75	4,18	51,23	5,63	69,73	7,29	91,08	9,14	115,27	11,17	142,31	3,94	50,63	6,26
1,61	17,28	2,77	29,86	4,22	44,63	5,46	58,29	6,85	73,77	8,38	91,08	2,42	25,92	4,15
1,10	10,00	1,88	17,28	2,95	27,44	4,37	40,48	5,48	51,23	6,70	63,25	1,64	15,00	2,82
0,79	6,30	1,36	10,88	2,14	17,28	3,17	25,79	4,47	36,73	5,58	46,47	1,19	9,45	2,04
0,60	4,22	1,03	7,29	1,62	11,58	2,40	17,28	3,39	24,60	4,61	33,75	0,90	6,33	1,55
0,47	2,96	0,81	5,12	1,28	8,13	1,89	12,14	2,66	17,28	3,62	23,70	0,71	4,44	1,22
0,38	2,16	0,65	3,73	1,03	5,93	1,52	8,85	2,15	12,60	2,92	17,28	0,57	3,24	0,98
0,31	1,62	0,54	2,80	0,85	4,45	1,25	6,65	1,77	9,46	2,40	12,98	0,47	2,43	0,81
0,26	1,25	0,45	2,16	0,71	3,43	1,05	5,12	1,48	7,29	2,01	10,00	0,40	1,88	0,68
0,22	0,98	0,38	1,70	0,60	2,70	0,89	4,03	1,26	5,73	1,71	7,87	0,34	1,47	0,58
0,19	0,79	0,33	1,36	0,52	2,16	0,77	3,22	1,09	4,59	1,47	6,30	0,29	1,18	0,50
0,17	0,64	0,29	1,11	0,45	1,76	0,67	2,62	0,94	3,73	1,28	5,12	0,25	0,96	0,43
0,15	0,53	0,25	0,91	0,40	1,45	0,59	2,16	0,83	3,08	1,13	4,22	0,22	0,79	0,38
0,13	0,44	0,22	0,76	0,35	1,21	0,52	1,80	0,73	2,56	1,00	3,52	0,20	0,66	0,34
0,12	0,37	0,20	0,64	0,31	1,02	0,46	1,52	0,65	2,16	0,89	2,96	0,17	0,56	0,30
0,10	0,31	0,18	0,54	0,28	0,86	0,42	1,29	0,59	1,84	0,80	2,52	0,16	0,47	0,27
0,09	0,27	0,16	0,47	0,25	0,74	0,38	1,11	0,53	1,57	0,72	2,16	0,14	0,41	0,24

Расстояние между опорами* [мм]
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

2000

пес	ущие	ונטוו	осы (mm)										
40	x 4	45	x 4	50) x 4	60	x 4	70	x 4	80	x 4	90	x 4	35
F_P	F_V	F_P	F_V	F_P										
21,86	323,84	27,42	409,86	33,51	506,00	47,38	728,64	63,22	991,76	80,93	1295,36	100,46	1639,44	21,11
14,57	182,16	18,28	230,55	22,34	284,63	31,59	409,86	42,15	557,87	53,95	728,64	66,97	922,19	14,07
10,93	116,58	13,71	147,55	16,75	182,16	23,69	262,31	31,61	357,03	40,46	466,33	50,23	590,20	10,55
8,74	80,96	10,97	102,47	13,40	126,50	18,95	182,16	25,29	247,94	32,37	323,84	40,18	409,86	7,38
6,33	51,59	8,94	73,45	11,17	92,94	15,79	133,83	21,07	182,16	26,98	237,92	33,49	301,12	5,35
4,81	34,56	6,78	49,21	9,21	67,50	13,54	102,47	18,06	139,47	23,12	182,16	28,70	230,55	4,06
3,77	24,27	5,33	34,56	7,23	47,41	11,84	80,96	15,81	110,20	20,23	143,93	25,11	182,16	3,19
3,04	17,69	4,30	25,19	5,83	34,56	9,90	59,72	14,05	89,26	17,98	116,58	22,32	147,55	2,57
2,51	13,29	3,54	18,93	4,80	25,97	8,15	44,87	12,64	71,25	16,19	96,35	20,09	121,94	2,12
2,10	10,24	2,97	14,58	4,03	20,00	6,83	34,56	10,64	54,88	14,71	80,96	18,26	102,47	1,78
1,79	8,05	2,52	11,47	3,42	15,73	5,81	27,18	9,05	43,16	13,23	64,43	16,74	87,31	1,51
1,54	6,45	2,17	9,18	2,95	12,59	5,00	21,76	7,79	34,56	11,39	51,59	15,45	73,45	1,30
1,34	5,24	1,89	7,46	2,57	10,24	4,35	17,69	6,78	28,10	9,91	41,94	13,84	59,72	1,13
1,18	4,32	1,66	6,15	2,25	8,44	3,82	14,58	5,95	23,15	8,70	34,56	12,15	49,21	0,99
1,04	3,60	1,47	5,13	1,99	7,03	3,38	12,16	5,27	19,30	7,70	28,81	10,76	41,02	0,88
0,93	3,03	1,31	4,32	1,78	5,93	3,01	10,24	4,69	16,26	6,87	24,27	9,59	34,56	0,78
0,83	2,58	1,17	3,67	1,59	5,04	2,70	8,71	4,21	13,83	6,16	20,64	8,60	29,39	0,70
0,75	2,21	1,06	3,15	1,44	4,32	2,44	7,46	3,80	11,85	5,55	17,69	7,76	25,19	0,63

^{*} Расстояние между опорами = ширина в просвете между опорами

Представленные в таблицах значения рассчитаны на основании их максимально допустимых значений несущей способности (Прогиб I/200). При этом в основу положена поверхность расположения груза в 200 х 200 мм и деление несущих полос в 33,3 мм. Во избежание возникновения мест, о которые можно споткнуться, возникающее под единичным грузом прогибание не должно превышать 4 мм.

x 3	35	x 3	40	x 3	45	x 3	50	x 3	60	x 3	70	x 3	30	x 4	35	x 4
F_V	F_P	F_V														
136,62	12,66	185,96	16,39	242,88	20,56	307,40	25,13	379,50	35,53	546,48	47,42	743,82	12,53	182,16	16,88	247,94
76,85	8,44	104,60	10,93	136,62	13,71	172,91	16,75	213,47	23,69	307,40	31,61	418,40	8,35	102,47	11,26	139,47
44,79	6,33	66,94	8,20	87,44	10,28	110,66	12,57	136,62	17,77	196,73	23,71	267,78	5,53	59,72	8,44	89,26
25,92	4,43	41,16	6,55	60,72	8,23	76,85	10,05	94,88	14,21	136,62	18,97	185,96	3,76	34,56	5,91	54,88
16,32	3,21	25,92	4,75	38,69	6,70	55,09	8,38	69,70	11,84	100,37	15,81	136,62	2,72	21,76	4,28	34,56
10,94	2,44	17,36	3,60	25,92	5,09	36,91	6,91	50,63	10,15	76,85	13,55	104,60	2,07	14,58	3,25	23,15
7,68	1,91	12,20	2,83	18,20	3,99	25,92	5,42	35,56	8,88	60,72	11,85	82,65	1,62	10,24	2,55	16,26
5,60	1,54	8,89	2,28	13,27	3,22	18,90	4,37	25,92	7,42	44,79	10,54	66,94	1,31	7,46	2,06	11,85
4,21	1,27	6,68	1,88	9,97	2,65	14,20	3,60	19,47	6,11	33,65	9,48	53,44	1,08	5,61	1,69	8,91
3,24	1,07	5,15	1,58	7,68	2,22	10,94	3,02	15,00	5,12	25,92	7,98	41,16	0,90	4,32	1,42	6,86
2,55	0,91	4,05	1,34	6,04	1,89	8,60	2,57	11,80	4,36	20,39	6,78	32,37	0,77	3,40	1,21	5,40
2,04	0,78	3,24	1,15	4,84	1,63	6,89	2,21	9,45	3,75	16,32	5,84	25,92	0,66	2,72	1,04	4,32
1,66	0,68	2,63	1,00	3,93	1,42	5,60	1,92	7,68	3,26	13,27	5,08	21,07	0,58	2,21	0,90	3,51
1,37	0,60	2,17	0,88	3,24	1,24	4,61	1,69	6,33	2,87	10,94	4,46	17,36	0,51	1,82	0,79	2,89
1,14	0,53	1,81	0,78	2,70	1,10	3,85	1,49	5,28	2,54	9,12	3,95	14,48	0,45	1,52	0,70	2,41
0,96	0,47	1,52	0,70	2,28	0,98	3,24	1,33	4,44	2,26	7,68	3,52	12,20	0,40	1,28	0,63	2,03
0,82	0,42	1,30	0,62	1,93	0,88	2,75	1,20	3,78	2,03	6,53	3,16	10,37	0,36	1,09	0,56	1,73
0,70	0,38	1,11	0,56	1,66	0,79	2,36	1,08	3,24	1,83	5,60	2,85	8,89	0,32	0,93	0,51	1,48

x 5	40	x 5	45	x 5	50) x 5	60) x 5	70	x 5	80	x 5	90	x 5	10	0 x 5
F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V								
309,93	27,32	404,80	34,27	512,33	41,89	632,50	59,22	910,80	79,03	1239,70	101,16	1619,20	125,57	2049,30	151,80	2530,00
174,33	18,22	227,70	22,85	288,18	27,92	355,78	39,48	512,33	52,69	697,33	67,44	910,80	83,71	1152,73	101,20	1423,13
111,57	13,66	145,73	17,14	184,44	20,94	227,70	29,61	327,89	39,52	446,29	50,58	582,91	62,79	737,75	75,90	910,80
68,60	10,92	101,20	13,71	128,08	16,75	158,13	23,69	227,70	31,61	309,93	40,46	404,80	50,23	512,33	60,72	632,50
43,20	7,92	64,49	11,17	91,82	13,96	116,17	19,74	167,29	26,34	227,70	33,72	297,40	41,86	376,40	50,60	464,69
28,94	6,01	43,20	8,48	61,51	11,51	84,38	16,92	128,08	22,58	174,33	28,90	227,70	35,88	288,18	43,37	355,75
20,33	4,72	30,34	6,66	43,20	9,04	59,26	14,81	101,20	19,76	137,74	25,29	179,91	31,39	227,70	37,95	281,1
14,82	3,80	22,12	5,37	31,49	7,29	43,20	12,37	74,65	17,56	111,57	22,48	145,73	27,90	184,44	33,73	227,70
11,13	3,13	16,62	4,42	23,66	6,01	32,46	10,19	56,09	15,81	89,06	20,23	120,44	25,11	152,43	30,36	188,18
8,58	2,63	12,80	3,71	18,23	5,03	25,00	8,54	43,20	13,30	68,60	18,39	101,20	22,83	128,08	27,60	158,13
6,74	2,23	10,07	3,15	14,33	4,28	19,66	7,26	33,98	11,31	53,96	16,54	80,54	20,93	109,13	25,30	134,7
5,40	1,92	8,06	2,71	11,48	3,69	15,74	6,25	27,20	9,73	43,20	14,24	64,49	19,32	91,82	23,35	116,1
4,39	1,67	6,55	2,36	9,33	3,21	12,80	5,44	22,12	8,47	35,12	12,39	52,43	17,30	74,65	21,69	101,2
3,62	1,47	5,40	2,07	7,69	2,82	10,55	4,78	18,23	7,44	28,94	10,88	43,20	15,19	61,55	20,24	84,3
3,02	1,30	4,50	1,83	6,41	2,49	8,79	4,23	15,19	6,58	24,13	9,63	36,02	13,44	51,28	18,06	70,3
2,54	1,16	3,79	1,64	5,40	2,22	7,41	3,77	12,80	5,87	20,33	8,58	30,34	11,98	43,20	16,10	59,2
2,16	1,04	3,22	1,47	4,59	1,99	6,30	3,38	10,88	5,26	17,28	7,70	25,80	10,75	36,73	14,44	50,3
1,85	0,94	2,76	1,32	3,94	1,80	5,40	3,05	9,33	4,75	14,82	6,94	22,12	9,70	31,49	13,02	43,2

участок не для ходьбы

участок по которому можно ходить

Коэффицент пересчета из кг в кН: 10 кH = 1 тонна; 1 кH = 100 кг

Условные обозначения нагрузок

сосредоточенная нагрузка на поверхность 200х200 груз в кН

F_V равномерно распределенная нагрузка в кН/м²

Таблицы для расчета нагрузки в зависимости от шага ячеек

Таблица расчетов для нагрузок разных ячеек относительно ячейки 33,33х33,33 мм

нагрузка равномерно распределенная

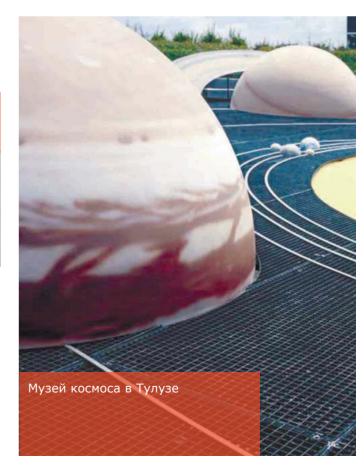
Размер ячеек по осям (мм)	Множитель для равномерно распределенной нагрузки	Поверхность просвета для несущих полос 2 мм	Поверхность просвета для несущих полос 3 мм
11,11 x 11,11	3,00	66,8%	59,5%
16,66 x 16,66	2,06	77,0%	71,8%
22,22 x 22,22	1,50	82,4%	78,4%
33,33 x 33,33	1,00	87,9%	85,2%
44,44 x 44,44	0,75	90,8%	88,7%
50,00 x 50,00	0,67	91,8%	89,9%
66,66 x 66,66	0,50	93,7%	92,3%

Таблица расчетов для нагрузок разных ячеек относительно ячейки 33,33х33,33 мм нагрузка равномерно распределенная

Размер ячеек по осям (мм)	Множитель для равномерно распределенной нагрузки	Поверхность просвета для несущих полос 4 мм	Поверхность просвета для несущих полос 5 мм
16,66 x 16,66	2,06	61,4%	48,0%
22,22 x 22,22	1,50	66,4%	59,1%
33,33 x 33,33	1,00	76,6%	71,2%
44,44 x 44,44	0,75	82,0%	77,8%
50,00 x 50,00	0,67	83,8%	80,0%
66,66 x 66,66	0,50	87,6%	84,6%

Таблица расчетов для нагрузок разных ячеек относительно ячейки 33,33х33,33 мм

Сосредоточенная нагрузка на поверхности 200х200 мм Fp (кН)


Размер ячеек по осям (мм)	на по	итель верхно а несуі	ости 20	0x200	ММ	ой наг	рузки	
	20	25	30	35	40	45	50	60
11,11 x 11,11	2,29	2,30	2,31	2,32	2,33	2,35	2,36	2,38
16,66 x 16,66	1,68	1,69	1,70	1,70	1,71	1,72	1,72	1,74
22,22 x 22,22	1,32	1,32	1,33	1,33	1,33	1,34	1,34	1,35
33,33 x 33,33	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
44,44 x 44,44	0,84	0,84	0,84	0,84	0,83	0,83	0,83	0,83
50,00 x 50,00	0,79	0,79	0,78	0,78	0,78	0,78	0,77	0,77
66,66 x 66,66	0,68	0,68	0,67	0,67	0,67	0,66	0,66	0,65

Допускаемые нагрузки для движения средств транспорта (кН). (Представленные в таблице коэффициенты определены для перпендикулярного нажима на несущие полосы)

Категория	я Нагрузка	Поверхность	Коэффи-	Сосредоточен (кН) на поверх	
класса мостов	на колесо (кН)	нагрузки (мм)	циент	200х200 мм Статистическое	Коэффициент динамичности
60	100	200 x 600	2,15	46,51	60,46
45	75	200 x 500	1,85	40,54	52,70
30	50	200 x 400	1,50	33,33	43,33
24	40	200 x 300	1,25	32,00	41,60
16	50	200 x 400	1,50	33,33	43,33
12	40	200 x 300	1,25	32,00	41,60
9	30	200 x 260	1,13	26,55	34,52
6	20	200 x 200	1,00	20,00	26,00
3	10	200 x 200	1,00	10,00	13,00

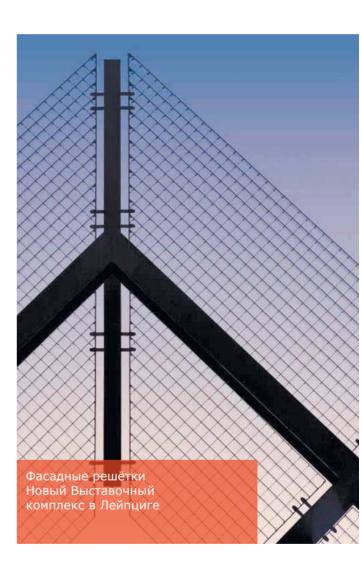
Таблица расчетов для нагрузок разных ячеек относительно ячейки 33,33х33,33 мм Сосредоточенная нагрузка на поверхности 200х200 мм Fp (кН)

Размер ячеек		ожите 10вер					нной	і нагр	узки					
по осям (мм)	Выс	ота н	есущ	ей по	лосы	(MM)								
	25	30	40	50	60	70	80	90	100	110	120	130	140	150
16,66 x 16,66	1,69	1,70	1,71	1,72	1,74	1,75	1,77	1,78	1,80	1,81	1,83	1,85	1,87	1,89
22,22 x 22,22	1,32	1,33	1,33	1,34	1,35	1,35	1,36	1,37	1,38	1,38	1,39	1,40	1,41	1,42
33,33 x 33,33	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
44,44 x 44,44	0,84	0,84	0,83	0,83	0,83	0,82	0,82	0,82	0,81	0,81	0,80	0,80	0,80	0,79
50,00 x 50,00	0,79	0,78	0,78	0,77	0,77	0,77	0,76	0,76	0,75	0,75	0,74	0,73	0,73	0,72
66,66 x 66,66	0,68	0,67	0,67	0,66	0,65	0,65	0,64	0,63	0,63	0,62	0,61	0,60	0,59	0,58

Шаг ячеек для алюминиевых и стальных решеток

Группа матер	риалов с толщи	ной несущей п	олосы 2/3 мм
Несущая полоса 2 мм	Несущая полоса 3 мм	Связующая полоса	Обрамление
20x2		10x2	T20 или 20x3
25x2	25x3	10x2	T25 или 25x3
30x2	30x3	10x2	T30 или 30x3
35x2	35x3	10x2	Т35 или 35х3
40x2	40x3	10x2	T40 или 40x3
45x2	45x3	10x2	T45 или 45x3
50x2	50x3	10x2	T50 или 50x3
60x2	60x3	20x2	60x3
	70x3	20x2	70x3
	80x3	20x2	80x3
	90x3	20x2	90x3
	100x3	20x2	100x3

	Общеупотребительный шаг ячеек														
Несуш			Связующая полоса												
11,1	Х	11,1			22,2	33,3									
21,0	Х			21,0		33,3									
22,2	Х	11,1			22,2	33,3	44,4		66,6						
33,3	X	11,1	16,65	21,0	22,2	33,3			66,6						
44,4	Х	11,1			22,2		44,4								
55,5	X					33,3		55,5							
66,6	Х					33,3			66,6						

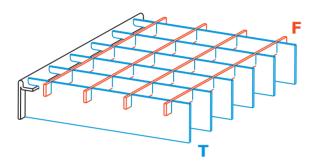

Несущая полоса 4 мм	Несущая полоса 5 мм	Связующая полоса	Обрамление
25x4	25x5	10x3	
30x4	30x5	12x3	
35x4	35x5	12x3	
40x4	40x5	12x3	
45x4	45x5	12x3	
50x4	50x5	12x3	
	55x5	12x3	Обрамление
60x4	60x5	12x3	плоским
70x4	70x5	12x3	профилем
80x4	80x5	12x3	размером с
90x4	90x5	12x3	несущую полос
100x4		12x3	
	100x5	20x3	
	110x5	20x3	
	120x5	20x3	
	130x5	20x3	
	140x5	20x3	
	150x5	20x3	

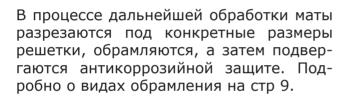
Размер ячеек на просвет

Размер ячеек на просвет получается из соответствующего шага полос и применяемых толщин материалов

Пример:

Шаг 33,3 x 33,3 / несущая полоса 3 мм /связующая полоса 2 мм даст на просвет $30,3 \times 31,3$


	06	щеупотр	ебитель	ный шаі	ячеек	
Несуш полоса			Связу	ющая п	олоса	
21,0	Х		22,2	33,3	44,4	
25,0	Х			33,3		
33,3	X	16,65	22,2	33,3		66,6

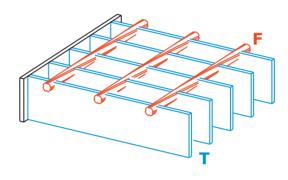

^{*} Возможны другие варианты шага и толщины несущих и связующих полос по запросу

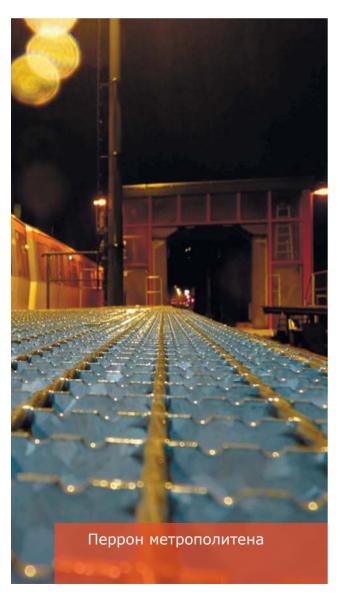
Прессовано-сварной решетчатый настил

Прессовано - сварной решетчатый настил производится из несущих и связующих металлических полос, имеющих шлицы, и которые запрессовываются друг с другом под большим давлением, и одновременно соединяются электрической сваркой. Во время сварки производятся элементы (маты) стандартной длины 6100 мм и шириной в 1000 мм.

Высокая прочность прессовано-сварного настила подтверждена испытаниями в местах со сложными условиями эксплуатации. Такие решетки находят применение в металлургической и химической промышленности, в судостроении, энергетике, горнодобывающей промышленности и т.д. В зависимости от нагрузки, которую будет принимать решетчатый настил, применяются различные размеры ячеек и несущих полос. Сварные решетки соответствуют требованиям RAL-GZ 638

При использовании данного вида настила в особо скользких местах (где возможно загрязнение различными жирами или маслами, а также есть вероятность образования наледи), можно повысить его безопасность с помощью нанесения зубьев противоскольжения на несущие полосы; на связующие полосы; на несущие и связующие полосы. Типы защиты противоскольжения указаны на стр 11.

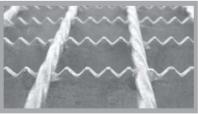


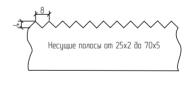


Сварной решетчатый настил

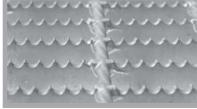
Сварные прессованные решётки изготавливаются из стали методом кузнечно-прессовой сварки несущих полос и связующих прутков, в соответствии с европейским стандартом DIN 24537. Несущие полосы и четырёхгранные скрученные покровные прутки обрезаются под размер решётки прежде, чем поперечные прутки будут запрессованы в несущие полосы под давлением в 1000 кН, и одновременно сварены в целое при помощи электросварки. Неослабленные несущие полосы вместе с приваренными покровными прутками гарантируют высокую жесткость на скручивание. Несущим элементом сварного настила является полоса, которая и определяет длину всей конструкции. Связующий пруток только фиксирует положение несущей полосы, нагрузку не несет.

элементы противоскользящей защиты для сварного настила. При использовании решётчатого настила в особо скользких местах (где возможно загрязнение различными жирами или маслами, а также есть вероятность образования наледи) можно повысить его безопасность с помощью нанесения зубьев противоскольжения на несущие полосы.


Тип SR4 (Стандартный вариант)



SR41 — выпиловка выемок противоскольжения только на несущих полосах.


Тип SR2 (Зуб пилы)

SR21 — выпиловка зубьев противоскольжения только на несущих полосах.

Тип SR1 (Волна)

SR11 — выпиловка выемок противоскольжения только на несущих полосах.

Рекомендации по заказу сварного настила

При выборе любого типа решётчатого настила необходимо учитывать ориентирование решёток относительно опор. Они должны располагаться перпендикулярно движению и опираться концами на несущие элементы опорной конструкции (балки, швеллера, уголка и т.п.). Минимальная величина опоры равна высоте несущей полосы, но не менее 30 мм.

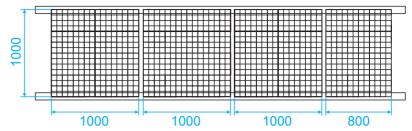
При выборе габаритных размеров сварного решётчатого настила необходимо учитывать:

- оптимальный размер 1000x1000 мм.
- максимальной рекоммендуемый размер 2000x1250 мм (несущая полоса X связующий пруток).
- в отдельных случаях настил может быть изготовлен большего размера (необходимо уточнить при заказе).

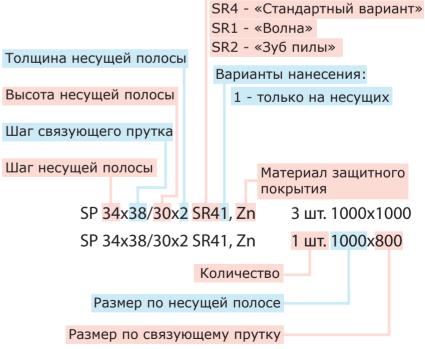
Пример заказа сварного настила

В случае необходимости закрыть площадь 1000×3800 мм (см. рис. стр. 23), где первый размер — 1000 мм.— расстояние между опорами, рекомендуется использовать 4 сварных решёток: 3 размером по связующему прутку 1000 мм и 1 решётка 800 мм.

Таким образом, для покрытия площади размером 1000 x 3800 мм необходимы сварные решётки:


 $1000 \times 1000 \text{ мм} - 3 \text{ шт.}$ (где первый размер — длина несущей полосы, 2-й — длина связующего прутка).

 1000×800 мм — 1 шт. (где 1000 мм — длина несущей полосы, 800 мм — длина связующего прутка).



Тип зубьев противоскольжения:

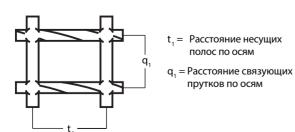
_ - отсутствует

Таблицы нагрузок для сварных решеток

MM_	He	CVII	шие	ПО	пΩ	сы (MM	1																	
HAG	110	.cy.	4///	, 110	-	, ide	, IIIII	')																	
TORI 3V amin	25	x 2	30	x 2	35	x 2	40) x 2	50) x 2	25	x 3	30) x 3	35	5 x 3	40) x 3	50	x 3	60	x 3	70	x 3	
Расстояние между опорами∗ [м	F _P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	
300	5,35	86,37	7,64	124,37	10,31	169,29	13,36	221,11	20,56	345,48	8,02	129,56	11,46	186,56	15,46	253,93	20,04	331,66	30,84	518,22	43,66	746,24	58,49	1015,72	
400	3,56	48,58	5,09	69,96	6,87	95,22	8,91	124,37	13,71	194,33	5,35	72,88	7,64	104,94	10,31	142,84	13,36	186,56	20,56	291,50	29,11	419,76	38,99	571,34	
500	2,67	31,09	3,82	44,77	5,15	60,94	6,68	79,60	10,28	124,37	4,01	46,64	5,73	67,16	7,73	91,41	10,02	119,40	15,42	186,56	21,83	268,65	29,24	365,66	
600	2,14	21,59	3,06	31,09	4,12	42,32	5,35	55,28	8,22	86,37	3,21	32,39	4,58	46,64	6,19	63,48	8,02	82,92	12,34	129,56	17,46	186,56	23,39	253,93	
700	1,78	15,86	2,55	22,84	3,44	31,09	4,45	40,61	6,85	63,46	2,67	23,80	3,82	34,27	5,15	46,64	6,68	60,92	10,28	95,18	14,55	137,06	19,50	186,56	
800	1,53	11,96	2,18	17,49	2,95	23,81	3,82	31,09	5,87	48,58	2,29	17,93	3,27	26,24	4,42	35,71	5,73	46,64	8,81	72,88	12,47	104,94	16,71	142,84	
900	1,33	8,40	1,91	13,82	2,58	18,81	3,34	24,57	5,14	38,39	2,00	12,60	2,87	20,73	3,87	28,21	5,01	36,85	7,71	57,58	10,92	82,92	14,62	112,86	
1000	1,07	6,12	1,70	10,58	2,29	15,24	2,97	19,90	4,57	31,09	1,61	9,18	2,55	15,87	3,44	22,85	4,45	29,85	6,85	46,64	9,70	67,16	13,00	91,41	
1100	0,88	4,60	1,52	7,95	2,06	12,59	2,67	16,45	4,11	25,70	1,33	6,90	2,27	11,92	3,09	18,89	4,01	24,67	6,17	38,55	8,73	55,51	11,70	75,55	
1200	0,74	3,54	1,27	6,12	1,87	9,72	2,43	13,82	3,74	21,59	1,11	5,31	1,91	9,18	2,81	14,58	3,64	20,73	5,61	32,39	7,94	46,64	10,63	63,48	
1300	0,63	2,79	1,08	4,81	1,70	7,65	2,23	11,41	3,43	18,40	0,95	4,18	1,62	7,22	2,55	11,47	3,34	17,12	5,14	27,60	7,28	39,74	9,75	54,09	
1400	0,54	2,23	0,93	3,85	1,46	6,12	2,06	9,14	3,16	15,86	0,81	3,35	1,40	5,78	2,20	9,18	3,08	13,71	4,74	23,80	6,72	34,27	9,00	46,64	
1500	0,47	1,81	0,81	3,13	1,27	4,98	1,89	7,43	2,94	13,82	0,71	2,72	1,21	4,70	1,91	7,47	2,83	11,14	4,41	20,73	6,24	29,85	8,36	40,63	
1600	0,41	1,49	0,71	2,58	1,12	4,10	1,66	6,12	2,74	11,96	0,62	2,24	1,07	3,87	1,68	6,15	2,49	9,18	4,11	17,93	5,82	26,24	7,80	35,71	
1700	0,37	1,25	0,63	2,15	0,99	3,42	1,47	5,10	2,57	9,97	0,55	1,87	0,94	3,23	1,48	5,13	2,20	7,66	3,86	14,95	5,46	23,24	7,31	31,63	
1800	0,33	1,05	0,56	1,81	0,88	2,88	1,31	4,30	2,42	8,40	0,49	1,57	0,84	2,72	1,32	4,32	1,96	6,45	3,63	12,60	5,14	20,73	6,88	28,21	
1900	0,29	0,89	0,50	1,54	0,79	2,45	1,17	3,66	2,25	7,14	0,44	1,34	0,75	2,31	1,19	3,67	1,76	5,48	3,38	10,71	4,85	18,51	6,50	25,32	
2000	0,26	0,77	0,45	1,32	0,71	2,10	1,06	3,13	2,03	6,12	0,40	1,15	0,68	1,98	1,07	3,15	1,59	4,70	3,05	9,18	4,60	15,87	6,16	22,85	

Змм

Размер ячеек на просвет


Размер ячеек на просвет получается из соответствующего деления ячеек и применяемых толщин материалов

Пример:

Деление 34,3 х 38,1 / несущая полоса 3 мм / связующий пруток 6 х 6 мм даст на просвет 31,3 х 32,1 - обозначение принятое обычно в торговле 30×30

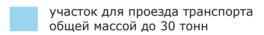
Материал: Ячейки: Сталь S235JR 34,3/19 34,3/24 34,3/38,1 Нагрузки см. таблицу

> Ячейки: 34,3/50,8 34,3/76,2 34,3/101,6 Нагрузки см. таблицу минус 5%

Несущая полоса 2 мм	Несущая полоса 3 мм	Несущая полоса 4 мм	Несущая полоса 5 мм
20x2			
25x2	25x3	25x4	25x5
30x2	30x3	30x4	30x5
35x2	35x3	35x4	35x5
40x2	40x3	40x4	40x5
45x2	45x3	45x4	45x5
50x2	50x3	50x4	50x5
60x2	60x3	60x4	60x5
	70x3	70x4	70x5
обрамление	обрамление	обрамление	обрамление

	Общеупотребительный шаг ячеек													
Несущая Связующая полоса полоса														
20,77	Х		24,0	38,1	50,8									
30,15	Х		24,0		50,8	76,2								
34,30	Х	19,25	24,0	38,1	50,8	76,2								
41,45	Х		24,0		50,8		101,6							

4мм


5мм

Змм

30	x 4	35	x 4	40	x 4	45	x 4	50	x 4	60	x 4	70	x 4	30) x 5	35	x 5	40	x 5	50) x 5	60) x 5	70	x 5
F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V	F_P	F_V												
15,28	248,75	20,62	338,57	26,73	442,22	33,57	559,68	41,12	690,96	58,21	994,99	77,98	1354,29	19,10	310,93	25,77	423,21	33,41	552,77	51,40	863,70	72,77	1243,73	97,48	1692,86
10,19	139,92	13,75	190,45	17,82	248,75	22,38	314,82	27,41	388,67	38,81	559,68	51,99	761,79	12,74	174,90	17,18	238,06	22,27	310,93	34,27	485,83	48,51	699,60	64,98	952,23
7,64	89,55	10,31	121,89	13,36	159,20	16,78	201,48	20,56	248,75	29,11	358,20	38,99	487,54	9,55	111,94	12,89	152,36	16,70	199,00	25,70	310,93	36,38	447,74	48,74	609,43
6,11	62,19	8,25	84,64	10,69	110,55	13,43	139,92	16,45	172,74	23,29	248,75	31,19	338,57	7,64	77,73	10,31	105,80	13,36	138,19	20,56	215,93	29,11	310,93	38,99	423,21
5,09	45,69	6,87	62,19	8,91	81,22	11,19	102,80	13,71	126,91	19,40	182,75	25,99	248,75	6,37	57,11	8,59	77,73	11,14	101,53	17,13	158,64	24,26	228,44	32,49	310,93
4,37	34,98	5,89	47,61	7,64	62,19	9,59	78,71	11,75	97,17	16,63	139,92	22,28	190,45	5,46	43,73	7,36	59,51	9,55	77,73	14,69	121,46	20,79	174,90	27,85	238,06
3,82	27,64	5,15	37,62	6,68	49,14	8,39	62,19	10,28	76,77	14,55	110,55	19,50	150,48	4,78	34,55	6,44	47,02	8,35	61,42	12,85	95,97	18,19	138,19	24,37	188,10
3,40	21,16	4,58	30,47	5,94	39,80	7,46	50,37	9,14	62,19	12,94	89,55	17,33	121,89	4,25	26,44	5,73	38,09	7,42	49,75	11,42	77,73	16,17	111,94	21,66	152,36
3,03	15,89	4,12	25,18	5,35	32,89	6,71	41,63	8,22	51,39	11,64	74,01	15,60	100,73	3,79	19,87	5,15	31,48	6,68	41,12	10,28	64,24	14,55	92,51	19,50	125,92
2,54	12,24	3,75	19,44	4,86	27,64	6,10	34,98	7,48	43,19	10,58	62,19	14,18	84,64	3,18	15,30	4,69	24,30	6,07	34,55	9,35	53,98	13,23	77,73	17,72	105,80
2,16	9,63	3,40	15,29	4,45	22,83	5,59	29,81	6,85	36,80	9,70	52,99	13,00	72,12	2,70	12,04	4,25	19,11	5,57	28,53	8,57	46,00	12,13	66,23	16,25	90,15
1,86	7,71	2,93	12,24	4,11	18,28	5,16	25,70	6,33	31,73	8,96	45,69	12,00	62,19	2,33	9,64	3,66	15,30	5,14	22,84	7,91	39,66	11,20	57,11	15,00	77,73
1,62	6,27	2,55	9,95	3,77	14,86	4,80	21,16	5,87	27,64	8,32	39,80	11,14	54,17	2,02	7,84	3,18	12,44	4,72	18,57	7,34	34,55	10,40	49,75	13,93	67,71
1,42	5,17	2,24	8,20	3,31	12,24	4,48	17,43	5,48	23,91	7,76	34,98	10,40	47,61	1,78	6,46	2,80	10,25	4,14	15,30	6,85	29,89	9,70	43,73	13,00	59,51
1,26	4,31	1,98	6,84	2,93	10,21	4,14	14,53	5,14	19,94	7,28	30,99	9,75	42,18	1,57	5,38	2,47	8,55	3,67	12,76	6,43	24,92	9,10	38,73	12,18	52,72
1,12	3,63	1,76	5,76	2,61	8,60	3,69	12,24	4,84	16,79	6,85	27,64	9,17	37,62	1,40	4,53	2,21	7,20	3,27	10,75	6,05	20,99	8,56	34,55	11,47	47,02
1,01	3,08	1,58	4,90	2,34	7,31	3,31	10,41	4,51	14,28	6,47	24,68	8,66	33,76	1,26	3,86	1,98	6,12	2,93	9,14	5,64	17,85	8,09	30,84	10,83	42,20
0,91	2,64	1,43	4,20	2,12	6,27	2,99	8,93	4,07	12,24	6,13	21,16	8,21	30,47	1,13	3,31	1,78	5,25	2,64	7,84	5,08	15,30	7,66	26,44	10,26	38,09

участок не предназначен для пешеходов
участок по которому можно ходить
участок для проезда транспорта общей массой до 3 тонн
участок для проезда транспорта общей массой до 9 тонн

Условные обозначения нагрузок

сосредоточенная нагрузка на поверхность 200х200 груз в кН

равномерно распределенная нагрузка в кН/м²

Коэффициент пересчета из кг в кН $10~{\rm kH}=1$ тонна $1~{\rm kH}=100~{\rm kr}$

Мы рекомендуем заказывать решетки, по которым осуществляется движение автотранспорта, с толщиной несущей полосы не менее 4 - 5 мм

Представленные значения рассчитаны на основании максимально допустимых значений несущей способности для стали St.37 (аналог марки Cт3 ГОСТ 380-2005). В основу положена поверхность распределения груза в 200х200 мм и деление несущих полос в 34,3 мм. Во избежание возникновения мест, о которые можно споткнуться, возникающий под единичным грузом прогиб не должен превышать 4 мм.

^{*} Расстояние между опорами = ширина в просвете между опорами

Специальные формы решеток

Решётки для хождения по крыше.

Чтобы с приносящим счастье трубочистом не случилось несчастья при выполнении своей работы, решётки для хождения по крыше позаботятся о безопасности, даже при льде и снеге.

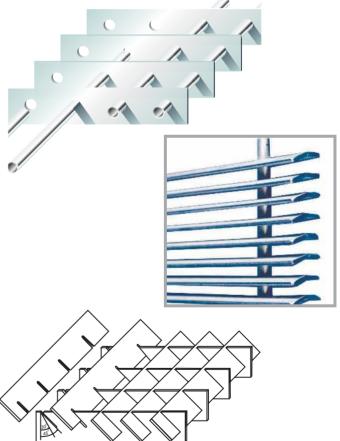
Для обслуживания кровли рекомендуем выбрать решётки в противоскользящем варианте.

Данный вид решеток изготавливается из пресованного, или прессовано-сварного решетчатого настила с противоскользящей защитой. Размеры – по запросу.

Несущая полоса 25 х 2/3 мм. Размер ячейки 30 х 30 мм, плоское обрамление.

Пластинчатые решётки декоративны и практичны.

Традиционно они применяются в качестве покрытий шахт, проложенных под землёй отопительных коллекторов, и надземных желобов плавательных бассейнов.


Пластинчатые решётки изготавляются в различных вариантах материала, формы профиля, и цвета.

Трубка диаметром 10 или 15 мм в качестве поперечного элемента; расстояние между поперечными трубками 50, 100, 150, 200 ... мм

Жалюзийный решетчатый настил.

В жалюзийном настиле связующая полоса расположена под углом от 30°-45° по отношению к несущей. Данные настилы находят своё применение там, где нежелательна прозрачность, например на мостиках, дорожках, переходах, вентиляционных решётках, покрытиях балконов, подвергающихся световому воздействию, или постороннему взгляду облицовках фасадов.

Производственные возможности

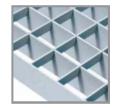
Основным преимуществом решетчатого настила является долгий срок службы, который обеспечен за счет соблюдения технологии изготовления и широких производственных возможностей обработки поверхности материала. Покрытие решетки может быть любым, и в зависимости от области применения, может помимо функциональной нагрузки нести еще и эстетическую, по запросу заказчика.

Горячее цинкование.

Ячеистые решётки из стали в стандартном исполнении проходят горячее цинкование согласно норме DIN EN ISO 1461. Цинковая оболочка с чистотой содержания цинка 99,9 % гарантирует, что при расчетной механической нагрузке цинк не отслоится.

Лакирование в печи.

Обезжиривание погружением, после чего нанесение грунтовки и покровного слоя 2-KPUR, во всех тонах таблицы цветов. Просыхание длится 1 час при температуре $60 \, ^{\circ} - 80 \, ^{\circ}$ C.

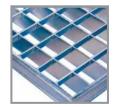



Гальваническое цинкование.

Обезжиривание погружением, травление и гальваническая оцинковка в ваннах с электролитом.

Анодирование (алюминий)

Обезжиривание погружением, травление и полоскание, после чего анодирование в электролитической ванне натуральным алюминием (E6EV1). После анодирования могут наноситься различные цветовые тона согласно таблице Eurus.

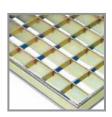


Путём травления.

С полным погружением и после обработки пассивирующим раствором и специальными соляными растворами восстанавливается потерянный в ходе обработки пассивирующий слой.

Полировка электрохимическим способом (нерж. сталь).

Осуществляется в электролитической ванне по технологии, в результате которой образуется однородная полированная поверхность, обладающая грязеотталкивающими свойствами.

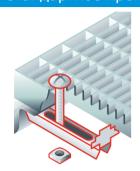


Напыление порошка.

Материал обезжиривается погружением в ванну, в зависимости от материала, протравливается и хромируется. После чего автоматически напыляется порошок и прижигается при температуре около $170 \, ^{\circ}$ С. Толщина слоя $60 - 80 \, \text{мк}$.

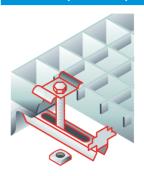
Хромирование.

Производится электролитическим методом. Хромирование осуществляется в ванне для погружения и может производиться в различных цветовых тонах.

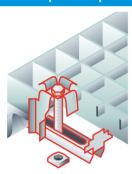


Крепеж

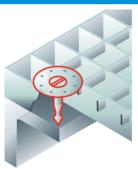
Здесь мы представляем Вам наиболее часто применяющиеся крепёжные и стопорные элементы. Все элементы поставляются как из горячеоцинкованной, так и из нержавеющей стали.


Стандартное крепление

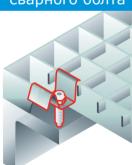
для ячеек размером 30 x 10 мм


- Винт со сфероцилиндрической головкой М 8
- Нижняя часть зажима
- Четырёхгранная гайка

Стандартное крепление


- Верхняя часть скобы
- Нижняя часть зажима
- Шестигранный болт М 8
- Четырёхгранная гайка

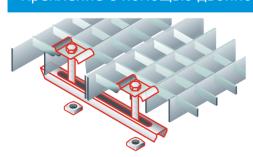
Стопорное крепление


- Стопорная верхняя часть скобы
- Нижняя часть зажима
- Шестигранный болт М 8
- Четырёхгранная гайка

Крепление при помощи посадочного болта

- Верхняя часть тарелки с гильзой, снабжённой резьбой
- Болт М 8 с резьбой

Крепление с помощью сварного болта


- глубоко вытянутая верхняя часть скобы
- хромированный болт М 8 с резьбой
- самостопорящаяся шестигранная гайка

Крепление с помощью сварного болта

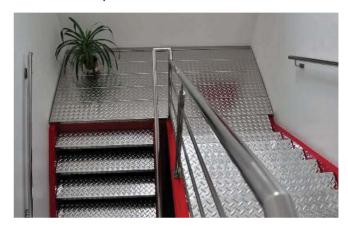
- глубоко вытянутая верхняя часть тарелки
- хромированный болт М 8 с резьбой
- самостопорящаяся шестигранная гайка

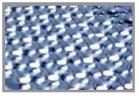
Крепление с помощью двойной скобы

для предотвращения образования кантов, о которые можно споткнуться, на стыках решётки

- 2 верхних части скоб или тарелок
- 1 нижняя часть зажима
- 2 шестигранных болта М 8
- 2 четырёхгранных гайки

Профилированные решетки


Материал, изменивший архитектурный облик Европы, приобретает все большую популярность. Современной высокотехнологичной продукцией пользуются строительные, машиностроительные, пищевые компании. Сферы применения перфорированных листов разнообразны. В современной архитектуре они используются для ажурных перегородок, невесомых балконных ограждений, радиаторов отопления, подвесных потолков. Профилированный лист – это материал, обладающий высокими противоскользящими свойствами. Профилированные настилочные решетки позволяют конструировать безопасные платформы в особых неблагоприятных и эксплуатационных условиях.


Преимущества профилированных решеток настила позволяют применять его в качестве многофункционального материала в проектных решениях любой сложности:

- Предотвращение скольжения перфорированные виды настила обладают высокой пропускной способностью, что позволяет не задерживать на поверхности способствующие скольжению вещества (лед, вода, масла, нефть, жир), что дает возможность использовать этот настил в различных отраслях промышленности и производства.
- Легкость материала позволяет сокращать вес конечной конструкции, делая сборку конструкции быстрой и удобной
- Стойкость к неблагоприятным погодным и эксплуатационным условиям
- Эстетика исполнения. Благодаря дифференцированной поверхности, профилированные решетки широко используются в гражданском строительстве в качестве противошумовых заграждений в помещениях, на улицах, а так же в декоративных целях: из них изготавливают торговое и выставочное оборудование, решетки воздуховодов и вентиляторов, шумоглушители, таблички, декоративные рекламные элементы.

Поскольку перфорированный металл - это идеальные сита и фильтры, не остались в стороне и сельское хозяйство и химическая промышленность.

А так же изготавливаются различные ступени для лестниц, с противоскользящими характеристиками, зависящими от вида перфорации листа. Максимальная длина листа 6 метров.

Тип AP 1,5 - 30/RUN(сталь 1,5мм) Тип AP 2 - 30/RUN(сталь 2мм) Тип AP 2,5 - 30/RUN(сталь 2,5мм) Перфорация противоскользящего элемента 2хØ8мм, по осям 15/30мм, высота 2 мм. Перфорация водоотводная Ø11мм, по осям 15/30мм, глубина 3 мм.

Тип AP 2 - 50/MAW(сталь 2мм) Тип AP 3 - 50/MAW(сталь 3мм) Перфорация противоскользящего элемента Ø 14 мм, по осям 50 мм, высота 4 мм. Перфорация водоотводная Ø8 мм, по осям 50 мм, глубина 0 мм.

Тип AP 1,5 - 30/GES(сталь 1,5мм) Тип AP 2 - 30/GES (сталь 2мм) Тип AP 2,5 - 30/GES(сталь 2,5мм) Перфорация противоскользящего элемента Ø 15 мм без отверстий, по осям 20/40 мм, высота 3 мм. Образец перфорации 2 одинаковых ряда 1 ряд передвинутый.

Тип AP 1,5 - 30/SER(сталь 1,5мм) Тип AP 2 - 30/SER(сталь 2мм) Тип AP 2,5 - 30/SER(сталь 2,5мм) Перфорация противоскользящего элемента Ø13мм, по осям 27мм, высота 10 мм.

Тип AP 1,5 - 30/STE(сталь 1,5мм) Тип AP 2 - 30/STE(сталь 2мм) Тип AP 2,5 - 30/STE(сталь 2,5мм) Перфорация противоскользящего элемента Ø 8 мм, по осям 60 мм, высота 2 мм.

Таблица нагрузок решеток — тип АР

Материал S235JR, $R_d = 235 \text{ N/мм}^2$, оцинкованный по норме EN- ISO 1461 Профилированные решетки - тип AP SER высота 40мм

	а Ширина а решетки									Pa	сстоян	ие мех	кду оп	орами	L [мм]								
[MM]	[MM]		500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
	120	Fv	7363	5113	3757	2876	2272	1841	1521	1278	1089	939	818	719	599	505	429	368	318	277	242	213	189
	180	Fv	4909	3409	2504	1917	1515	1227	1014	852	726	626	545	479	400	337	286	245	212	184	161	142	126
	240	Fv	3681	2557	1878	1438	1136	920	761	639	545	470	409	360	300	253	215	184	159	138	121	107	94
	300	F_{ν}	2945	2045	1503	1150	909	736	609	511	436	376	327	288	240	202	172	147	127	111	97	85	75
1,5	360	Fv	2454	1704	1252	959	758	614	507	426	363	313	273	240	200	168	143	123	106	92	81	71	63
1,5	420	Fv	2104	1461	1073	822	649	526	435	365	311	268	234	205	171	144	123	105	91	79	69	61	54
	480	F_{ν}	1841	1278	939	719	568	460	380	320	272	235	205	180	150	126	107	92	80	69	61	53	47
	120	Fp	460	368	307	263	230	205	184	167	153	142	132	123	115	108	102	92	84	76	70	64	59
	180	Fp	307	245	205	175	153	136	123	112	102	94	88	82	77	72	68	62	56	51	47	43	39
	240-480	Fp	276	221	184	158	138	123	110	100	92	85	79	74	69	65	61	55	50	46	42	38	35
	120	Fv	9398	6526	4795	3671	2901	2350	1942	1632	1390	1199	1044	918	765	645	548	470	406	353	309	272	241
	180	Fv	6265	4351	3197	2447	1934	1566	1295	1088	927	799	696	612	510	430	365	313	271	235	206	181	160
	240	F _v	4699	3263	2397	1836	1450	1175	971	816	695	599	522	459	383	322	274	235	203	177	155	136	120
	300	F₀	3759	2611	1918	1468	1160	940	777	653	556	480	418	367	306	258	219	188	162	141	124	109	96
2,0	360	Fv	3133	2175	1598	1224	967	783	647	544	463	400	348	306	255	215	183	157	135	118	103	91	80
	420	F _v	2685	1865	1370	1049	829	671	555	466	397	343	298	262	219	184	157	134	116	101	88	78	69
	480	F _v	2350	1632	1199	918	725	587	485	408	348	300	261	229	191	161	137	118	102	88	77	68	60
	120	Fp	587	470	392	336	294	261	235	214	196	181	168	157	147	138	131	118	107	98	89	82	75
	180	Fp	392	313	261	224	196	174	157	142	131	121	112	104	98	92	87	79	71	65	59	55	50
	240-480	Fp	352	282	235	201	176	157	141	128	118	108	101	94	88	83	78	71	64	59	54	49	45
	120	Fv	11240	7808	5737	4392	3470			1952	1663	1434	1249	1098	916	772	656	562	486	423	370	326	288
	180	F₀	7496	5205	3824		2314			1301	1109	956	833	732	611	514	437	375	324	282	247	217	192
	240	F _v	5622	3904	2868		1735			976	832	717	625	549	458	386	328	281	243	211	185	163	144
	300	F _v	4497 3748	3123 2603	2295		1388	1124		781	665	574	500	439 366	366	309	262	225	194	169	148	130	115
2,5	360 420	F _v		2003	1912 1639	1464 1255	1157 992	937 803	774	651	554 475	478 410	416 357	300	305 262	257 220	219 187	188	162 139	141 121	123	109 93	96 82
	420	F _v	3212						664	558								161			106		
	480 120	F _V	2811 703	1952 562	1434 469	1098 402	868 351	703 312	581 281	488 256	416 234	359 216	312 201	275 187	229 176	193 165	164 156	141 141	122 128	106 117	92 107	81 98	72 90
	180	F _p	469	375	312	268	234	208	187	170	156	144	134	125	1/6	110	104	94	85	78	71	98 65	60
	240-480	Fp E	422	337	281	200	211	187	169	153	141	130	121	112	105	99	94	85	63 77	70 70	64	59	54
	Z 4 U-40U	Fp	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800			2100	2200	2300	2400	
1,5		f	0,08	0,11	0,15	0,20	0,25	0,31	0,38	0,45	0,53	0,61	0,70	0,80	0,85	0,90	0,95	1,00	1,05	1,10	1,15	1,20	
2,0	120-480	f _v																,	•		·		
2,5		fp	0,07	0,10	0,14	0,18	0,22	0,27	0,33	0,39	0,45	0,52	0,60	0,68	0,76	0,85	0,95	1,00	1,05	1,10	1,15	1,20	1,25

Максимальная нагрузка из условия грузоподъёмности (үf = 1,5)
Максимальная нагрузка из условия эксплуатации (үf = 1,0)

Пояснения:

 F_{ν} = Допустимые нагрузки в случае равномерно распределённой нагрузки [daN/m2]

 $f_{v} = прогиб в [cm] в слуае нагрузки Fv F_{p} = Допустимые нагрузки в случае сосредоточенной$ нагрузки [daN] наповерхность 200 x 200 мм

 $f_p = прогиб в [cm] в слуае нагрузки Fp$

Максимальная длина профилированных решеток составляет 6000 мм

Материал S235JR, Rd = 235 N/мм2, оцинкованный по норме EN- ISO 1461 Профилированные решетки - тип AP SER высота 50 мм

	Ширина решетки								ı	Расстоя	ние м	ежду (опора	ми L [м	ім]								
[[MM]	[MM]		500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
	120	F _v	10510	7299	5363	4106	3244	2628	2172	1825	1555	1341	1168	1026	909	811	728	642	554	482	422	371	329
	180	F_{ν}	7007	4866	3575	2737	2163	1752	1448	1217	1037	894	779	684	606	541	485	428	370	321	281	248	219
	240	F_{ν}	5256	3650	2681	2053	1622	1314	1086	912	777	670	584	513	455	406	364	321	277	241	211	186	164
	300	F_{ν}	4204	2920	2145	1642	1298	1051	869	730	622	536	467	411	364	324	291	257	222	193	169	149	131
1,5	360	F_{ν}	3504	2433	1788	1369	1081	876	724	608	518	447	389	342	303	270	243	214	185	161	141	124	110
1,5	420	F_{ν}	3003	2086	1532	1173	927	751	621	521	444	383	334	293	260	232	208	183	158	138	121	106	94
	480	F_{ν}	2628	1825	1341	1026	811	657	543	456	389	335	292	257	227	203	182	160	139	121	106	93	82
	120	F_p	657	526	438	375	329	292	263	239	219	202	188	175	164	155	146	138	131	125	119	112	103
	180	F_p	438	350	292	250	219	195	175	159	146	135	125	117	110	103	97	92	88	83	80	75	69
	240-480	Fp	394	315	263	225	197	175	158	143	131	121	113	105	99	93	88	83	79	75	72	67	62
	120	F_{ν}	13510	9381	6892	5277	4169	3377	2791	2345	1998	1723	1501	1319	1169	1042	936	825	713	620	542	477	422
	180	F_{V}	9006	6254	4595	3518	2780	2251	1861	1564	1332	1149	1001	880	779	695	624	550	475	413	362	318	282
	240	F_{V}	6754	4691	3446	2638	2085	1689	1396	1173	999	862	751	660	584	521	468	412	356	310	271	239	211
	300	F_{V}	5404	3752	2757	2111	1668	1351	1116	938	799	689	600	528	467	417	374	330	285	248	217	191	169
2,0	360	F_{V}	4503	3127	2297	1759	1390	1126	930	782	666	574	500	440	390	348	312	275	238	207	181	159	141
	420	F_{ν}	3860	2680	1969	1508	1191	965	798	670	571	492	429	377	334	298	267	236	204	177	155	136	121
	480	F_{ν}	3377	2345	1723	1319	1042	844	698	586	500	431	375	330	292	261	234	206	178	155	136	119	106
	120	F_p	844	675	563	483	422	375	338	307	281	260	241	225	211	199	188	178	169	161	154	144	132
	180	F_p	563	450	375	322	281	250	225	205	188	173	161	150	141	132	125	119	113	107	102	96	88
	240-480	Fp	507	405	338	290	253	225	203	184	169	156	145	135	127	119	113	107	101	96	92	86	79
	120	F_{ν}	16270	11300	8303	6357	5023	4068	3362	2825	2407	2076	1808	1589	1408	1256	1127	994	859	747	654	575	509
	180	F_{V}	10850	7534	5535	4238	3348	2712	2242	1884	1605	1384	1205	1059	939	837	751	663	573	498	436	384	339
	240	F_{V}	8137	5651	4151	3178	2511	2034	1681	1413	1204	1038	904	795	704	628	564	497	429	374	327	288	255
	300	F_{V}	6509	4520	3321	2543	2009	1627	1345	1130	963	830	723	636	563	502	451	398	344	299	262	230	204
2,5	360	F_{v}	5425	3767	2768	2119	1674	1356	1121	942	802	692	603	530	469	419	376	331	286	249	218	192	170
,-	420	Fv	4650	3229	2372	1816	1435	1162	961	807	688	593	517	454	402	359	322	284	245	213	187	164	145
	480	F_{V}	4068	2825	2076	1589	1256	1017	841	706	602	519	452	397	352	314	282	249	215	187	163	144	127
	120	F_p	1017	814	678	581	509	452	407	370	339	313	291	271	254	239	226	214	203	194	185	173	160
	180	Fp	678	543	452	388	339	301	271	247	226	209	194	181	170	160	151	143	136	129	123	116	106
	240-480	Fp	610	488	407	349	305	271	244	222	203	188	174	163	153	144	136	129	122	116	111	104	96
			500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
1,5 2,0	120-480	f_{V}	0,06	0,09	0,13	0,16	0,21	0,26	0,31	0,37	0,43	0,50	0,58	0,66	0,74	0,83	0,92	1,00	1,05	1,10	1,15	1,20	1,25
2,5	120-400	fp	0,06	0,08	0,11	0,15	0,18	0,22	0,27	0,32	0,37	0,43	0,49	0,56	0,62	0,70	0,78	0,86	0,94	1,03	1,13	1,20	1,25

	Максимальная нагрузка из условия грузоподъёмности (үf = 1,5)
	Максимальная нагрузка из условия эксплуатации (үf = 1,0)

Пояснения:

 $F_v = Допустимые нагрузки в случае равномерно$ распределённой нагрузки [daN/m2]

 $f_v = прогиб в [cm] в слуае нагрузки Fv F_p = Допустимые нагрузки в случае сосредоточенной$ нагрузки [daN] наповерхность 200 x 200 мм

 f_p = прогиб в [cm] в слуае нагрузки Fp

Максимальная длина профилированных решеток составляет 6000 мм

Таблица нагрузок решеток — тип АР

Материал S235JR, Rd = 235 N/мм2, оцинкованный по норме EN- ISO 1461 Профилированные решетки – тип AP STE высота 40мм

Толщина металла	Ширина решетки								F	Расстоя	яние м	ежду с	опора	ии Г [и	им]								
[MM]	[MM]		500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
	150	Fv	6204	4309	3166	2424	1915	1551	1282	1077	918	791	689	598	498	420	357	306	264	230	201	177	157
	200	F _v	4653	3231	2374	1818	1436	1163	961	808	688	594	517	448	374	315	268	230	198	172	151	133	118
4.5	250	F _v	3723	2585	1899	1454	1149	931	769	646	551	475	414	359	299	252	214	184	159	138	121	106	94
1,5	300	Fv	3102	2154	1583	1212	958	776	641	539	459	396	345	299	249	210	178	153	132	115	101	89	78
	150	Fp	388	310	259	222	194	172	155	141	129	119	111	103	97	91	85	77	70	63	58	53	49
	200-300	Fp	291	233	194	166	145	129	116	106	97	89	83	78	73	68	64	58	52	48	44	40	37
	150	F _v	7927	5505	4044	3096	2447	1982	1638	1376	1173	1011	881	764	637	536	456	391	338	294	257	226	200
	200	F _v	5945	4129	3033	2322	1835	1486	1228	1032	880	758	661	573	478	402	342	293	253	220	193	170	150
	250	F _v	4756	3303	2427	1858	1468	1189	983	826	704	607	529	458	382	322	274	235	203	176	154	136	120
2,0	300	F _v	3963	2752	2022	1548	1223	991	819	688	586	506	440	382	318	268	228	196	169	147	129	113	100
	150	Fp	495	396	330	283	248	220	198	180	165	152	142	132	124	117	109	98	89	81	74	68	63
	200-300	Fp	372	297	248	212	186	165	149	135	124	114	106	99	93	87	82	74	67	61	56	51	47
	150	F _v	9493	6592	4843	3708	2930	2373	1961	1648	1404	1211	1055	915	763	642	546	468	405	352	308	271	240
	200	F _v	7119	4944	3632	2781	2197	1780	1471	1236	1053	908	791	686	572	482	410	351	303	264	231	203	180
	250	F _v	5696	3955	2906	2225	1758	1424	1177	989	843	727	633	549	458	385	328	281	243	211	185	163	144
2,5	300	F _v	4746	3296	2422	1854	1465	1187	981	824	702	605	527	457	381	321	273	234	202	176	154	136	120
	150	Fp	593	475	396	339	297	264	237	216	198	183	170	158	148	140	130	118	107	97	89	82	75
	200-300	Fp	445	356	297	254	223	198	178	162	148	137	127	119	111	105	98	88	80	73	67	61	56
			500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
1,5	150 300	f _v	0,08	0,11	0,16	0,20	0,26	0,32	0,38	0,46	0,54	0,62	0,71	0,80	0,85	0,90	0,95	1,00	1,05	1,10	1,15	1,20	1,25
2,0 2,5	150–300	fp	0,07	0,10	0,14	0,18	0,23	0,28	0,33	0,39	0,46	0,53	0,61	0,69	0,77	0,86	0,95	1,00	1,05	1,10	1,15	1,20	1,25

Максимальная нагрузка из условия грузоподъёмности (үf = 1,5
Максимальная нагрузка из условия эксплуатации ($\gamma f = 1,0$)

Пояснения:

 $F_v = Допустимые нагрузки в случае равномерно распределённой нагрузки [daN/m2]$

 $f_v = прогиб в [cm] в слуае нагрузки Fv$

 $F_p = Допустимые нагрузки в случае сосредоточенной нагрузки [daN] наповерхность 200 x 200 мм$

 $f_p = прогиб в [cm] в слуае нагрузки Fp$

Максимальная длина профилированных решеток составляет 6000 мм

Материал S235JR, Rd = 235 N/мм2, оцинкованный по норме EN- ISO 1461 Профилированные решетки - тип AP STE высота 50мм

Толщина металла	Ширина решетки								I	Расстоя	ание м	ежду с	порал	ии L [м	им]								
[MM]	[MM]		500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
	150	F_{V}	8798	6110	4489	3437	2716	2200	1818	1527	1302	1122	978	859	761	679	609	531	458	399	349	307	272
	200	F_{V}	6599	4582	3367	2578	2037	1650	1363	1146	976	842	733	644	571	509	457	398	344	299	262	230	204
1,5	250	F_{V}	5279	3666	2693	2062	1629	1320	1091	917	781	673	587	516	457	407	366	318	275	239	209	184	163
1,5	300	F _v	4399	3055	2244	1718	1358	1100	909	764	651	561	489	430	381	339	305	265	229	199	174	154	136
	150	F_p	550	440	367	314	275	244	220	200	183	169	157	147	138	129	122	116	110	105	100	92	85
	200-300	Fp	412	330	275	236	206	183	165	150	138	127	118	110	103	97	92	87	82	79	75	69	64
	150	Fv	11320	7858	5773	4420	3493	2829	2338	1965	1674	1443	1257	1105	979	873	784	683	590	513	449	395	350
	200	Fv	8487	5894	4330	3315	2619	2122	1753	1473	1255	1083	943	829	734	655	588	512	442	385	337	296	262
2,0	250	Fv	6790	4715	3464	2652	2096	1697	1403	1179	1004	866	754	663	587	524	470	410	354	308	269	237	210
,,	300	F{v}	5658	3929	2887	2210	1746	1414	1169	982	837	722	629	553	489	437	392	341	295	256	224	198	175
	150	Fp	707	566	472	404	354	314	283	257	236	218	202	189	177	166	157	149	141	135	129	119	110
	200-300	Fp	530	424	354	303	265	236	212	193	177	163	152	141	133	125	118	112	106	101	96	89	82
	150	F _v	13640	9473	6960	5329	4210	3410	2819	2368	2018	1740	1516	1332	1180	1053	945	823	711	619	541	476	422
	200	F _v	10230	7105	5220	3997	3158	2558	2114	1776	1514	1305	1137	999	885	790	709	617	533	464	406	357	316
2,5	250	F_{v}	8185	5684	4176	3197	2526	2046	1691	1421	1211	1044	910	799	708	632	567	494	427	371	325	286	253
,	300	F _v	6821	4737	3480	2664	2105	1705	1409	1184	1009	870	758	666	590	526	472	412	356	309	271	238	211
	150	Fp	853	682	568	487	426	379	341	310	284	262	244	227	213	201	190	180	171	162	155	143	132
	200-300	Fp	640	512	426	365	320	284	256	233	213	197	183	171	160	151	142	135	128	122	116	108	99
			500	600	700	800	900		1100		1300												
1,5 2,0	150-300	f _v	0,06	0,09	0,13	0,17	0,21	0,26	0,31	0,37	0,44	0,51	0,58	0,66	0,75	0,84	0,94	1,00	1,05	1,10	1,15	1,20	1,25
2,5		fp	0,06	0,08	0,11	0,15	0,18	0,23	0,27	0,32	0,38	0,43	0,50	0,56	0,63	0,71	0,79	0,87	0,96	1,05	1,14	1,20	1,25

	Максимальная нагрузка из условия грузоподъёмности (үf = 1,5)
	Максимальная нагрузка из условия эксплуатации (үf = 1,0)

Пояснения:

 F_{ν} = Допустимые нагрузки в случае равномерно распределённой нагрузки [daN/m2]

 $f_v = прогиб в [cm] в слуае нагрузки Fv$ $<math>F_p = Допустимые нагрузки в случае сосредоточенной нагрузки [daN] наповерхность 200 х 200 мм$

 $f_p = прогиб в [cm] в слуае нагрузки Fp$

Максимальная длина профилированных решеток составляет 6000 мм

Таблица нагрузок решеток — тип АР

Материал S235JR, Rd = 235 N/мм2, оцинкованный по норме EN- ISO 1461 Профилированные решетки – тип AP RUN, AP OFF, AP GES высота 40 мм

Толщина металла	Ширина решетки									Расст	ояние	между	опора	ами L	[мм]								
[MM]	[MM]		500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
	150	Fv	6201	4306	3164	2422	1914	1550	1281	1077	917	791	689	597	498	420	357	306	264	230	201	177	157
		F_p	517	413	345	295	258	230	207	188	172	158	137	120	107	95	85	77	70	63	58	53	49
	200	F_{ν}	5012	3480	2557	1958	1547	1253	1035	870	741	639	557	473	394	332	282	242	209	182	159	140	124
		Fp	313	251	209	179	157	139	125	114	104	96	89	84	78	74	67	61	55	50	46	42	39
	250	F_{V}	4265	2962	2176	1666	1316	1066	881	741	631	544	474	395	330	278	236	202	175	152	133	117	104
1,5		Fp	333	267	222	190	167	148	133	121	111	103	95	89	83	78	70	64	58	52	48	44	41
	300	F _v	3793	2634	1935	1481	1171	948	784	658	561	484	418	345	287	242	206	176	152	133	116	102	90
		Fp	356	284	237	203	178	158	142	129	119	109	102	95	89	82	74	66	60	55	50	46	42
	350	F _v			1256		760	615	508	427	364	314	273	240	202	170	144	124	107	93	81	72	63
		F _p	269	215	179	154	135	120	108	98	90	83	77	72	67	63	60	54	49	45	41	38	35
	400	F _v			1186		718	581	481	404	344	297	258	224	187	157	134	115	99	86	75	66	59
	150	Fp	388	310	258	222	194	172	155	141	129	118	103	90	80	71	64	58	52	48	44	40	37
	150	F _v		5502		3095		1981		1375		1011	880	763	636	536	456	391	338	294	257	226	200
	200	F _p	495	396	330 3271	283	248	220 1603	198 1325	180	165	151 818	712	115 605	102 504	91 425	82 361	74 310	67 268	61	56 204	51	47 159
	200	F _V	401	321	267		200	178	160	146	134	123		107		94	86	78	71	233 64	59	179 54	50
	250	F _p F√			2786				1128	948	808	697	607	506	422	356	302	259	224	195	170	150	133
	230	F _p	427	341	284	244	213	190	171	155	142	131		114	107	100	90	81	74	67	61	56	52
2,0	300	.p Fv			2480				1004	844	719	620	536	442	368	310	264	226	195	170	149	131	116
		F _p	456	365	304	260	228	203	182	166	152	140	130	J	114	105	94	85	77	70	64	59	54
	350	F _V	3140	2180	1602		969	785	649	545	464	401	349	307	257	217	184	158	137	119	104	91	81
		Fp	343	275	229	196	172	153	137	125	115	106	98	92	86	81	76	69	63	57	52	48	44
	400	F _v	2971	2063	1516	1161	917	743	614	516	440	379	330	286	239	201	171	147	127	110	96	85	75
		Fp	371	297	248	212	186	165	149	135	124	114	106	99	93	87	82	74	67	61	56	51	47
	150	Fv	9488	6589	4841	3706	2928	2372	1960	1647	1403	1210	1054	914	762	642	546	468	404	352	308	271	240
		Fp	593	474	395	339	297	264	237	216	198	181	157	138	122	109	98	88	80	73	67	61	56
	200	F_{ν}	7687	5338	3922	3003	2372	1922	1588	1334	1137	980	854	726	605	510	433	371	321	279	244	215	190
		F_p	480	384	320	275	240	214	192	175	160	148	137	128	120	113	104	93	85	77	70	65	60
	250	F_{V}	6554	4551	3344	2560	2023	1638	1354	1138	970	836	728	608	507	427	363	311	269	234	205	180	159
2,5		Fp	512	410	341	293	256	228	205	186	171	158	146	137	128	121	108	98	89	81	74	68	62
,-	300	F{V}	5838	4054	2979	2281	1802	1460	1206	1014	864	745	644	531	442	373	317	272	235	204	179	157	139
		F_p	547			313		243	219	199	182	168	156	146	137	127	114	102	93	85	77	71	65
	350	F_{V}			1915			939	776	652		479		J	308		221	189	163	142	124	109	97
		F _p	411			235		183		149		126		1	103		91	83	75	69	63	58	53
	400	F _v			1815			890	735	618	526	454	395	J	286		205	176	152	132	115	102	90
		Fp		356			222	198		162		137			111		98	88	80	73	67	61	56
4 -		_	500	600	700	800	900					1400											
1,5 2,0	150-400	f _v	0,08			0,20			0,38									1,00					
2,5		f_p	0,10	0,14	0,19	0,24	0,30	0,37	0,44	0,52	0,61	0,70	0,75	0,80	0,85	0,90	0,95	1,00	1,05	1,10	1,15	1,20	1,25

Максимальная нагрузка из условия грузоподъёмности (үf = 1,5)

Максимальная нагрузка из условия эксплуатации (үf = 1,0)

Пояснения:

 $F_v = Допустимые нагрузки в случае равномерно распределённой нагрузки [daN/m2]$

 $f_v = прогиб в [cm] в слуае нагрузки Fv$

 $F_p = Допустимые нагрузки в случае сосредоточенной нагрузки [daN] наповерхность 200 x 200 мм$

 $f_p = прогиб в [cm] в слуае нагрузки Fp$

Максимальная длина профилированных решеток составляет 6000 мм

Материал S235JR, Rd = 235 N/мм2, оцинкованный по норме EN- ISO 1461 Профилированные решетки – тип AP RUN, AP OFF, AP GES высота 50 мм

	Ширина решетки									Рассто	яние м	іежду (опора	ми L [мм]								
[MM]	[MM]		500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
	150	F _v	8794	6107	4487	3435	2714	2199	1817	1527	1301	1122	977	859	761	679	609	530	458	399	349	307	272
		Fp	733	586	489	419	366	326	293	267	244	226	209	195	183	165	148	133	121	110	101	92	85
	200	F _v	7043	4891	3593	2751	2174	1761	1455	1223	1042	898	783	688	609	544	487	417	360	313	274	241	214
		Fp	440	352	294	252	220	196	176	160	147	135	126	117	110	104	98	93	88	84	79	73	67
	250	F _v	5952	4133	3037	2325	1837	1488	1230	1033	881	759	661	581	515	459	405	347	300	261	228	201	178
1.5		Fp	465	372	310	266	233	207	186	169	155	143	133	124	116	109	103	98	93	89	82	76	70
1,5	300	F_{V}	5256	3650	2682	2053	1622	1314	1086	913	778	670	584	513	455	406	351	301	260	226	198	174	154
		Fp	493	394	329	282	246	219	197	179	164	152	141	131	123	116	110	104	99	94	86	79	72
	350	F_{V}	3525	2448	1798	1377	1088	881	728	612	521	450	392	344	305	272	244	216	187	163	142	125	111
		Fp	386	308	257	220	193	171	154	140	129	119	110	103	96	91	86	81	77	73	70	66	61
	400	F_{V}	3298	2290	1683	1288	1018	825	681	573	488	421	366	322	285	255	228	199	172	149	131	115	102
		Fp	550	440	366	314	275	244	220	200	183	169	157	147	137	124	111	100	91	83	75	69	64
	150	F_{ν}	11310	7855	5771	4418	3491	2828	2337	1964	1673	1443	1257	1105	978	873	783	682	590	513	449	395	349
		F_p	707	566	471	404	354	314	283	257	236	218	202	189	177	159	143	129	117	106	97	89	82
	200	F_{ν}	9067	6297	4626	3542	2798	2267	1873	1574	1341	1157	1007	886	784	700	627	537	464	404	353	311	275
		Fp	567	453	378	324	283	252	227	206	189	174	162	151	142	133	126	119	113	108	102	94	86
	250	Fv	7668	5325	3912	2995	2367	1917	1584	1331	1134	978	852	749	663	592	521	447	386	336	294	259	229
2,0		F_p	599	479	399	342	300	266	240	218	200	184	171	160	150	141	133	126	120	114	106	97	90
2,0	300	F_{V}	6776	4706	3457	2647	2091	1694	1400	1176	1002	864	753	662	586	523	453	388	335	292	255	225	199
		Fp	635	508	424	363	318	282	254	231	212	196	182	169	159	150	141	134	127	121	111	101	93
	350	F_{ν}	4529	3145	2311	1769	1398	1132	936	786	670	578	503	442	392	349	314	278	240	209	183	161	142
		Fp	495	396	330	283	248	220	198	180	165	152	142	132	124	117	110	104	99	94	90	85	78
	400	F_{V}	4242	2946	2164	1657	1309	1060	876	736	627	541	471	414	367	327	294	256	221	192	168	148	131
		Fp	530	424	354	303	265	236	212	193	177	163	152	141	133	125	118	112	106	101	96	89	82
	150	F_{V}	13640	9469	6957	5326	4208	3409	2817	2367	2017	1739	1515	1332	1180	1052	944	823	711	618	541	476	421
		Fp	852	682	568	487	426	379	341	310	284	262	244	227	213	192	172	155	141	128	117	108	99
	200	F _v	10940	7598	5582	4274	3377	2735	2261	1900	1619	1396	1216	1069	947	844	756	648	560	487	426	375	332
		Fp	684	547	456	391	342	304	274	249	228	210	195	182	171	161	152	144	137	130	123	113	104
	250	F _v	9260	6431	4725	3617	2858	2315	1913	1608	1370	1181	1029	904	801	715	630	540	467	406	355	313	277
2,5		Fp	724	579	482	413	362		289	263	241	223		193		170	161	152	145	138	128	118	108
	300	F _v	8189	5687	4178	3199	2528	2047	1692	1422	1211	1045	910	800	708	632	547	469	405	353	309	272	240
		Fρ	768	614		439			307		256						171			146		123	113
	350	F _v	5453		2782						807		606				378	335	290	252	220		172
		Fp -	597	477	398			265		217	199	184				_	133		119		108	102	94
	400	F _v	5113		2609						756					395		309	267	232	203	179	
		Fp	639	511	426													135		122		108	
			500	600	700	800	900											2000					
1,5 2,0	150-400	f _v	0,06	0,09	0,13	0,17	0,21	0,26	0,31	0,37	0,44	0,51	0,58	0,66	0,75	0,84	0,94	1,00	1,05	1,10	1,15	1,20	1,25
2,5		fp	0,08	0,11	0,15	0,20	0,25	0,30	0,36	0,43	0,50	0,58	0,66	0,75	0,84	0,90	0,95	1,00	1,05	1,10	1,15	1,20	1,25

Максимальная нагрузка из условия грузоподъёмности (үf = 1,5)

Максимальная нагрузка из условия эксплуатации (үf = 1,0)

Пояснения:

 $F_{v} = Допустимые нагрузки в случае равномерно распределённой нагрузки [daN/m2]$

 $f_v = прогиб в [cm] в слуае нагрузки Fv$

 $F_p = Допустимые нагрузки в случае сосредоточенной нагрузки [daN] наповерхность 200 х 200 мм$

 $f_p =$ прогиб в [cm] в слуае нагрузки Fp

Максимальная длина профилированных решеток составляет 6000 мм

Таблица нагрузок решеток — тип АР

Материал S235JR, Rd = 235 N/мм2, оцинкованный по норме EN- ISO 1461 Профилированные решетки – тип AP 2-50 MAW, ZAW, NOP и APD 2-50 DOP высота 35 мм

Нагрузка равномерно распределённая Fv [daN/m2]

Ширина решетки	Вес решетк	14	Расстояние между опорами L [мм]																
[мм]	[KL/W]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
80	29,4	17370	9773	6255	4344	3191	2443	1931	1564	1292	1086	912	730	594	489	408	344	292	251
105	26,2	13240	7446	4766	3310	2431	1862	1471	1191	985	827	695	556	452	373	311	262	223	191
130	24,2	10690	6014	3849	2673	1964	1504	1188	962	795	668	561	449	365	301	251	211	180	154
155	22,8	8968	5044	3228	2242	1647	1261	996	807	667	561	471	377	306	253	211	177	151	129
180	21,8	7722	4344	2780	1931	1418	1086	858	695	574	483	405	325	264	217	181	153	130	111
205	21,1	6780	3814	2441	1695	1245	954	753	610	504	424	356	285	232	191	159	134	114	98
230	20,5	6043	3399	2176	1511	1110	850	672	544	450	378	317	254	207	170	142	120	102	87
255	20,0	5451	3066	1962	1363	1001	767	606	491	405	341	286	229	186	154	128	108	92	79
280	19,6	4964	2792	1787	1241	912	698	552	447	369	310	261	209	170	140	117	98	83	72
305	19,3	4557	2564	1641	1139	837	641	506	410	339	285	239	192	156	128	107	90	77	66
330	19,0	4212	2369	1516	1053	774	592	468	379	313	263	221	177	144	119	99	83	71	61
80-330	f _v	0,04	0,06	0,10	0,14	0,19	0,25	0,32	0,39	0,47	0,56	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00

fv [cm] = прогиб при нагрузке Fv

Профилированные
решетки – тип AP 2-50 MAW, ZAW, NOP и APD 2-50 DOP высота 35 мм

Нагрузка сосредоточенная на поверхности 200 x 200 мм Fp [daN]

Ширина решетки [мм]	Вес	Расстояние между опорами L [мм]																	
	решетки [кг/м]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
80	29,4	782	521	391	313	261	223	196	174	156	142	130	120	112	99	87	78	70	63
105	26,2	596	397	298	238	199	170	149	132	119	108	99	92	85	75	66	59	53	48
130	24,2	481	321	241	193	160	138	120	107	96	87	80	74	69	61	54	48	43	39
155	22,8	404	269	202	161	135	115	101	90	81	73	67	62	58	51	45	40	36	32
180	21,8	348	232	174	139	116	99	87	77	70	63	58	53	50	44	39	35	31	28
205-330		313	209	156	125	104	89	78	70	63	57	52	48	45	39	35	31	28	25
80-330	fp	0,03	0,06	0,09	0,13	0,17	0,22	0,28	0,34	0,41	0,48	0,57	0,65	0,75	0,80	0,85	0,90	0,95	1,00

fp [cm] = прогиб при нагрузке Fp

Максимальная нагрузка из условия грузоподъёмности (үf = 1,5)

Максимальная нагрузка из условия эксплуатации (үf = 1,0)

Таблица рассчёта для другой высоты, пролёта и материала Тип: AP 2-50/MAW, AP 2-50/ZAW, AP 2-50/NOP, APD 2-50/DOP

Материал	Высота		зка равног еделённая			Нагрузка сосредоточенная на поверхности 200 х 200 mm [daN]					
	[мм]	Пролёт до [мм]	Множитель для F _V f _V	Пролет больше чем [мм]	для	Пролёт до [мм]	Множитель для F _p f _p	Пролёт больше чем [мм]	Множит. для F _p f _p		
	40	1400	1,290,89	1400	1,45 1,00	1700	1,290,89	1700	1,45 1,00		
Сталь	45	1600	1,610,80	1600	2,02 1,00	1900	1,61 0,80	1900	2,02 1,00		
S235JR	50	1700	1,960,72	1700	2,72 1,00	2000	1,960,72				
	60	2000	2,77 0,61			2000	2,77 0,61				
Нержвеющая сталь AISI 304 (1.4301)	35	1600	0,79 0,79	1600	1,00 1,00	1900	0,790,79	1800	1,00 1,00		

Материал S235JR, Rd = 235 N/мм2, оцинкованный по норме EN- ISO 1461 Профилированные решетки – тип AP 3-50 MAW, ZAW, NOP и APD 3-50 DOP высота 35 мм

Нагрузка равномерно распределённая Fv [daN/m2]

Ширина	Bec	-1/14							Рассто	яние м	иежду с	порамі	и L [мм]						
решетки [мм]		²] 300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
80	44,2	25160	14150	9056	6289	4620	3538	2795	2264	1871	1572	1293	1035	842	694	578	487	414	355
105	39,2	19170	10780	6900	4792	3520	2695	2130	1725	1426	1198	985	789	641	528	441	371	316	271
130	36,2	15480	8708	5573	3870	2843	2177	1720	1393	1151	968	796	637	518	427	356	300	255	219
155	34,2	12980	7303	4674	3246	2385	1826	1443	1169	966	812	667	534	434	358	298	251	214	183
180	32,7	11180	6289	4025	2795	2054	1572	1242	1006	832	699	575	460	374	308	257	217	184	158
205	31,6	9817	5522	3534	2454	1803	1381	1091	884	730	614	505	404	328	271	226	190	162	139
230	30,7	8750	4922	3150	2187	1607	1230	972	788	651	547	450	360	293	241	201	169	144	124
255	30,0	7892	4439	2841	1973	1450	1110	877	710	587	493	406	325	264	218	181	153	130	111
280	29,4	7187	4043	2587	1797	1320	1011	799	647	535	449	369	296	241	198	165	139	118	101
305	29,0	6598	3712	2375	1650	1212	928	733	594	491	412	339	272	221	182	152	128	109	93
330	28,5	6098	3430	2195	1525	1120	858	678	549	454	381	313	251	204	168	140	118	100	86
80-330	f_{v}	0,04	0,06	0,10	0,14	0,20	0,26	0,32	0,40	0,48	0,57	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00

fv [cm] = прогиб при нагрузке Fv

Профилированные решетки – тип AP 3-50 MAW, ZAW, NOP и APD 3 - 50 DOP высота 35 мм

Нагрузка сосредоточенная на поверхности 200 x 200 мм Fp [daN]

Ширина	Bec								Расстоя	ние ме	жду оп	орами	L [мм]						
решетки [мм]	решетки [кг/м²]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
80	44,2	1132	755	566	453	377	323	283	252	226	206	189	174	159	140	124	110	99	89
105	39,2	863	575	431	345	288	246	216	192	173	157	144	133	121	107	94	84	75	68
130	36,2	697	464	348	279	232	199	174	155	139	127	116	107	98	86	76	68	61	55
155	34,2	584	390	292	234	195	167	146	130	117	106	97	90	82	72	64	57	51	46
180	32,7	503	335	252	201	168	144	126	112	101	91	84	77	71	62	55	49	44	40
205-330		453	302	226	181	151	129	113	101	91	82	75	70	64	56	49	44	40	36
80-330	fp	0,04	0,06	0,09	0,13	0,18	0,23	0,28	0,35	0,42	0,49	0,58	0,67	0,75	0,80	0,85	0,90	0,95	1,00

fp [cm] = прогиб при нагрузке Fp

Максимальная нагрузка из условия грузоподъёмности ($\gamma f = 1,5$)

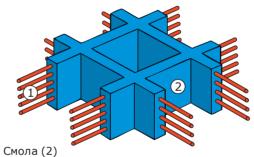
Максимальная нагрузка из условия эксплуатации ($\gamma f = 1,0$)

Таблица рассчёта для другой высоты, пролёта и материала Тип: AP 3-50/MAW, AP 3-50/ZAW, AP 3-50/NOP, APD 3-50/DOP

Материал	Высота решетки [мм]		грузка рав пределён Множитель для Fy fy	ная [dal	N/m ²] Множитель для	на по 200 х	для	и daN]	нная Множитель для F _D f _D
	40	1400	1,290,88	1400	1,46 1,00	1600	1,290,88	1600	1,46 1,00
Сталь	45	1500	1,62 0,79	1500	2,041,00	1800	1,620,79	1800	2,04 1,00
S235JR	50	1700	1,980,72	1700	2,75 1,00	2000	1,980,72		
	60	2000	2,81 0,61			2000	2,81 0,61		
Алюмини AIMg3-G2	. 35	700	0,55 1,62	700	0,341,00	800	0,55 1,62	800	0,341,00

Полимерный настил GFK

Полимерный настил GFK - инновационный современный материал, который предназначен для объектов, особая важность уделяется зашите поверхностей от коррозийных воздействий, в особых эксплуатационных средах, сильно подверженных воздействию химических веществ, низких и высоких температур. Пластиковый настил незаменим так же в условиях, где имеется повышенная опасность от воздействия снега, льда, смазок и влаги.



Такой материал состоит из двух основных компонентов: связующего и армирующего материалов - смолы и стекловолокна. Смешивая определенный пигмент краски со смолой, производится покраска решетки.

Характерные качества стеклопластика позволяют заменять им традиционные материалы, такие как нержавеющая и оцинкованная сталь, алюминий. Особенно в условиях агрессивной химической среды.

Диэлектрические свойства и низкая теплопроводность позволяют использовать этот тип покрытия для помещений с высокоточной электроникой, от сельского хозяйства до высокотехнологичных производств. Композитный решетчатый ячеистый настил не искрит, что идеально для помещений, вкоторых могут присутствовать горючие газы, а случайное падение инструментов на стальную решетку может дать искру.

Стекловолокно (1) Красящий пигмент (в составе смолы - 2)

Коррозия является серьезной проблемой в таких отраслях промышленности, как химическая, металлургическая, пищевая, водоподготовка, очистка сточных вод, энергетика и многих других.

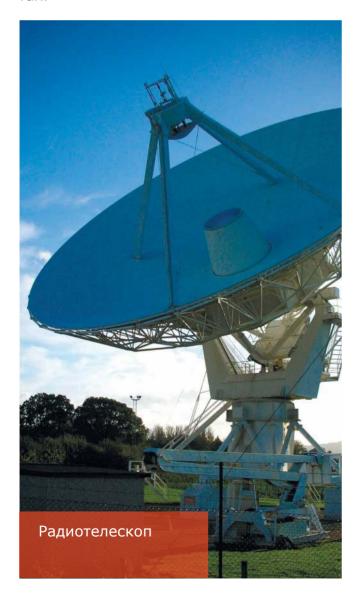
Литые композитные решетки GFK предназначены для обеспечения безопасных, долговечных, экономически выгодных и надежных решений в условиях, когда агрессивные среды и коррозионноактивные вещества разрушают металлы, дерево и другие конструкционные материалы.

В зависимости от степени агрессивности окружающей среды, мы можем предложить литые композитные решетки из того типа смолы, который будет оптимален для конкретных условий эксплуатации.

Обычно процентное соотношение смолы и стекловолокна составляет 30% к 70%.

Меняя состав компонентов, пластиковый настил приобретает уникальные характеристики, благодаря которым может эксплуатироваться в любых условиях.

Малый удельный вес, высокая прочность, высокая химическая устойчивость, низкая теплопроводность, широкий диапазон рабочих температур (от $-100~^{\circ}$ C до $+180~^{\circ}$ C), и простота монтажа – делают материал универсальным во всех областях применения.


Изменение физико-механических свойств смолы после 100 циклов замораживания до минус 60 и оттаивания до плюс 20 °C Уменьшение сопротивления Уменьшение сопротивления Уменьшение сопротивления Вид смолы растяжению, %, не более растяжению при изгибе, сжатию, %, не более %, не более FOOD NON FIRE 15 15 15 VINYL NON FIRE 15 15 15 ISO NON FIRE 15 15 15 **ECONOM STANDART** 15 15 15 ECONOM NON FIRE 15 15 15

Температура использования						
Тип смолы	Температура использования, °C					
Винилэфирная	-60 °C/+110°C					
Винилэфирная с высокой огнестойкостью	-60 °C/+110°C					
Изофталевая полиэфирная	-60 °C/+110°C					
Пищевая Полиэфирная	-60 °C/+110°C					
Ортофталевая полиэфирная	-60 °C/+110°C					
Феноловая	-60 °C/+180°C					

Стеклоткани не оказывают влияния на передачу EMI/RFI радиоволн, и часто используются для радаров, корпусов антенн и соответствующих поддержек, потому, что не создают дополнительных помех для данного оборудования, тогда как отражающая способность металла не позволяет применять его на таких объектах.

Вогнутые или зернистые поверхности пластиковых решеток позволяют добиться высокого сопротивления при скольжении. Данный вид пластикового настила широко применяется в гражданском строительстве, например, в зонах, где пешеходное движение и использование продуктовых тележек требуют прочной ровной поверхности,

а так же в сельском хозяйстве и животноводстве.

Пластиковый настил со сплошной закрытой поверхностью укладывается поверх имеющихся конструкций или решеток и предназначен для создания сплошных дорожек и продления срока службы эксплуатации конструкций в зонах с интенсивным движением. Литые решетки с закрытой поверхностью могут быть изготовлены на базе

Литые решетки с закрытой поверхностью могут быть изготовлены на базе стандартной решетки любого типа и размера.

Закрытая решетка гладкая.

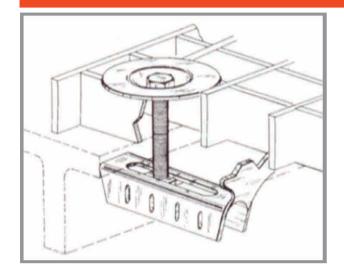
Композитный лист, закрывающий решетку, изготовлен из тех же материалов, что и сама решетка, наносится на панель после ее изготовления и имеет стандартную толщину 3 мм. Закрытые решетки идеально подходят для сервисных площадок, перекрытий котлованов, оврагов, создания специальных межэтажных перекрытий, транспортных зон и др. Вес увеличивается на 7,9 кг на 1м², высота решетки увеличивается на 3 мм.

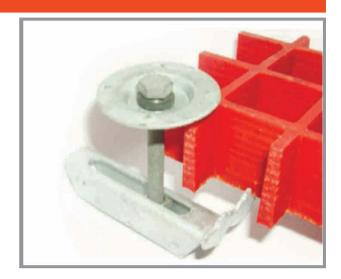
Закрытая решетка с покрытием.

Кварцевое кристаллическое покрытие. Вес увеличивается на $8,9~\rm kr$ на $1\rm m^2$, высота увеличивается на $6~\rm mm$.

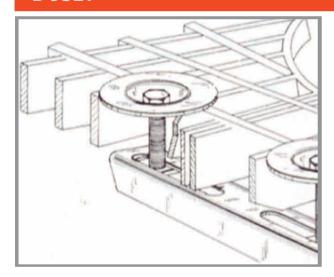
Литые решетки с проводящей поверхностью. Стандартные серии решеток не имеют проводящих свойств. Литые решетки с проводящей поверхностью имеют специальное карбоновое покрытие, благодаря которому происходит удаление статического электричества через заземляющий контур. Проводящая поверхность может быть сформирована на решетки любого типа и размера. Такие решетки находят применение на тех объектах, где недопустимо образование статического электричества в строительных конструкциях. Литые решетки с поводящей поверхностью имеют электрическое сопротивление менее 26 кОм на 300 мм.

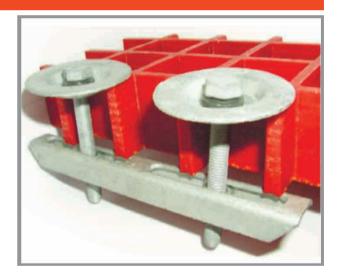
Ну а цветовые и качественные характеристики настила GFK дает неограниченные возможности его применения в дизайне. Цветовая гамма согласно RAL classic.

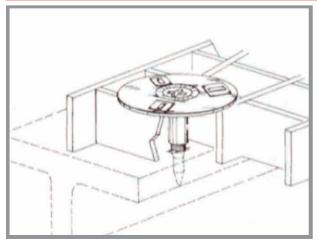

Ударная нагрузка 						
Тип настила из смолы ISO NON FIRE	Падение твердого тела массой 32 кг с высоты, при которой настил не разрушится, м, не менее					
51x51x51	4,0					
38x38x38	3,0					
38x38x30	2,5					
38x38x26	2,0					
19x38x38	3,0					
19x38x30	2,5					

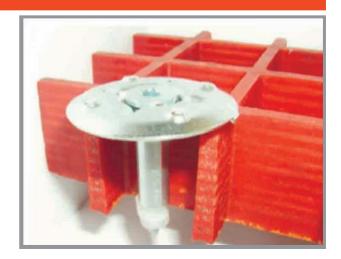


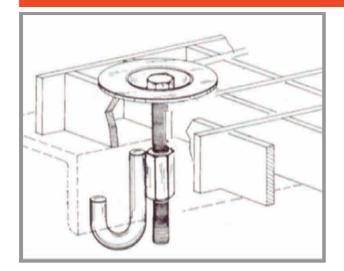
Крепление

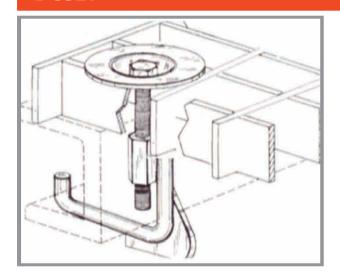

Все типы креплений для GFK Решеток изготовлены из высококачественной нержавеющей стали A4. Этот тип стали относится к коррозиеустойчивому, также называется "защита от кислот".


B 132T




B 932T


B 432TE



B 732T

B 832T

Показатели нагрузок при опирании по двум продольным сторонам. Серии: ISO NON FIRE, FOOD NON FIRE, VINYL NON FIRE

	Размер			Величина	нагрузки
Серия	ячейки, мм	Размер настила, мм	Вид нагрузки на настил	предельная, не менее	нормативная
			Равномерно распределенная q, кг/м ²	6628,00	2210,00
	19x38x30	2500x1000x30	Линейная q, кг/п.м	2549,00	849,40
			Сосредоточенная Р, кг	3059,10	1019,70
			Равномерно распределенная q, кг/м²	7137,90	2378,96
	19x38x38	2500x1000x38	Линейная q, кг/п.м	3263,04	1088,02
			Сосредоточенная Р, кг	4588,65	1529,55
			Равномерно распределенная q, кг/м ²	3059,10	1325,61
	38x38x26	2500x1000x26	Линейная q, кг/п.м	1223,64	509,85
ISO NON			Сосредоточенная Р, кг	2549,25	849,41
FIRE			Равномерно распределенная q, кг/м²	5608,35	1869,11
	38x38x30	2500x1000x30	Линейная q, кг/п.м	1835,46	611,82
			Сосредоточенная Р, кг	3059,10	1019,70
			Равномерно распределенная q, кг/м ²	7137,90	2378,96
	38x38x38	2500x1000x38	Линейная q, кг/п.м	3263,04	1088,02
			Сосредоточенная Р, кг	3568,95	1190,00
			Равномерно распределенная q, кг/м²	9687,15	3229,39
	51x51x51	2500x1000x51	Линейная q, кг/п.м	5608,35	1869,11
			Сосредоточенная Р, кг	6628,05	2209,69

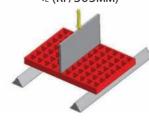
	Размер			Величина	нагрузки
Серия	ячейки, мм	Размер настила, мм	Вид нагрузки на настил	предельная, не менее	нормативная
			Равномерно распределенная q, кг/м ²	5098,50	1699,84
	19x38x30	2500x1000x30	Линейная q, кг/п.м	2039,40	680,14
			Сосредоточенная Р, кг	2549,25	849,41
			Равномерно распределенная q, кг/м ²	6118,20	2039,40
	19x38x38	2500x1000x38	Линейная q, кг/п.м	2753,19	917,73
			Сосредоточенная Р, кг	3568,95	1190,00
			Равномерно распределенная q, кг/м ²	2549,25	849,41
	38x38x26	2500x1000x26	Линейная q, кг/п.м	101,97	339,56
FOOD NON			Сосредоточенная Р, кг	2039,40	680,14
FIRE			Равномерно распределенная q, кг/м²	4588,65	1529,55
	38x38x30	2500x1000x30	Линейная q, кг/п.м	1529,55	509,85
			Сосредоточенная Р, кг	2549,25	849,41
	38x38x38		Равномерно распределенная q, кг/м ²	5608,35	1869,11
		2500x1000x38	Линейная q, кг/п.м	2753,19	917,73
			Сосредоточенная Р, кг	3059,10	1019,70
			Равномерно распределенная q, кг/м²	8157,60	2719,54
	51x51x51	2500x1000x51	Линейная q, кг/п.м	4588,65	1529,55
			Сосредоточенная Р, кг	5608,35	1869,11
			Равномерно распределенная q, кг/м²	13256,10	4418,36
	19x38x30	2500x1000x30	Линейная q, кг/п.м	5098,50	1699,84
			Сосредоточенная Р, кг	6118,20	2039,40
			Равномерно распределенная q, кг/м²	13256,10	4418,36
	19x38x38	2500x1000x38	Линейная q, кг/п.м	6628,05	2209,69
			Сосредоточенная Р, кг	9177,30	3059,10
			Равномерно распределенная q, кг/м²	6118,20	2039,40
	38x38x26	2500x1000x26	Линейная q, кг/п.м	2549,25	849,41
VINYL NON			Сосредоточенная Р, кг	5098,50	1699,84
FIRE			Равномерно распределенная q, кг/м²	11726,55	3908,51
	38x38x30	2500x1000x30	Линейная q, кг/п.м	3568,95	1190,00
			Сосредоточенная Р, кг	6118,20	2039,40
			Равномерно распределенная q, кг/м²	14275,80	4758,94
	38x38x38	2500x1000x38	Линейная q, кг/п.м	6628,05	2209,69
			Сосредоточенная Р, кг	7647,75	2549,25
	_, _, _,	0500 (000 5:	Равномерно распределенная q, кг/м²	19374,30	6457,76
	51x51x51	2500x1000x51	Линейная q, кг/п.м	10197,00	3398,66
			Сосредоточенная Р, кг	13765,95	4588,00

Показатели нагрузок при опирании по двум продольным сторонам. Серии: ECONOM NON FIRE,

ECONOM STANDART

				Величина	нагрузки
Серия	ячейки	Размер настила, мм	Вид нагрузки на настил	предельная, не менее	нормативная
			Равномерно распределенная q, кг/м ²	81571,00	2719,54
	19x38x30	2500x1000x30	Линейная q, кг/п.м	3059,10	1019,70
			Сосредоточенная Р, кг	3568,95	1190,00
			Равномерно распределенная q, кг/м ²	9177,30	3059,10
	19x38x38	2500x1000x38	Линейная q, кг/п.м	4078,80	1359,26
			Сосредоточенная Р, кг	6118,20	2039,40
			Равномерно распределенная q, кг/м ²	3568,95	1190,00
	38x38x26	2500x1000x26	Линейная q, кг/п.м	1631,52	543,50
ECONOM			Сосредоточенная Р, кг	3059,10	1019,70
NON FIRE			Равномерно распределенная q, кг/м ²	7647,75	2549,25
	38x38x30	2500x1000x30	Линейная q, кг/п.м	2345,31	782,11
			Сосредоточенная Р, кг	3568,95	1190,00
			Равномерно распределенная q, кг/м ²	8667,45	2888,81
	38x38x38	2500x1000x38	Линейная q, кг/п.м	4078,80	1359,26
			Сосредоточенная Р, кг	4588,65	1529,55
			Равномерно распределенная q, кг/м ²	12746,25	4249,09
	51x51x51	2500x1000x51	Линейная q, кг/п.м	6628,05	2209,69
			Сосредоточенная Р, кг	8157,60	2719,54
			Равномерно распределенная q, кг/м ²	9177,30	3059,10
	19x38x30	2500x1000x30	Линейная q, кг/п.м	3568,95	1190,00
			Сосредоточенная Р, кг	4078,80	1359,26
			Равномерно распределенная q, кг/м ²	10197,00	3398,66
	19x38x38	2500x1000x38	Линейная q, кг/п.м	4588,65	1529,55
			Сосредоточенная Р, кг	6628,05	2209,69
			Равномерно распределенная q, кг/м ²	4078,80	1359,26
	38x38x26	2500x1000x26	Линейная q, кг/п.м	1733,49	917,73
ECONOM			Сосредоточенная Р, кг	3568,95	1190,00
STANDART			Равномерно распределенная q, кг/м ²	8157,60	2719,54
	38x38x30	2500x1000x30	Линейная q, кг/п.м	2651,22	884,08
			Сосредоточенная Р, кг	4078,80	1359,26
			Равномерно распределенная q, кг/м ²	9687,15	3229,39
	38x38x38	2500x1000x38	Линейная q, кг/п.м	4588,65	1529,55
			Сосредоточенная Р, кг	5098,50	1699,84
			Равномерно распределенная q, кг/м ²	13765,95	4588,65
	51x51x51	2500x1000x51	Линейная q, кг/п.м	7647,75	2549,25
			Сосредоточенная Р, кг	9687,15	3229,39

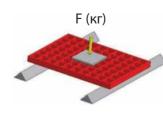
Линейная нагрузка


Здесь показаны данные о концентрированной нагрузке, вызывающей прогиб в 1% для полоски решетки шириной 305 мм.

Нагрузка осуществляется на центр полоски.

Эти данные можно использовать для определения прогиба на обрезанных панелях для концентрированных нагрузок, при опоре с двух сторон. Для решеток, имеющих большую ширину, нагрузка может быть легко рассчитана посредством умножения ширины на нагрузку, поделенную на 305 мм.

Эти данные можно использовать для определения прогиба для целых панелей, когда нагрузка прикладывается на сторону, не имеющую опоры, а не по центру, при чем прогиб на стороне, не имеющей опоры, будет иметь меньшее значение. Применение специальных крепежных устройств для соединения решеток, которые не имеют опоры, приведет к уменьшению показателей прогиба.



Показатели нагрузок при опирании по периметру. Серии: ISO NON FIRE, FOOD NON FIRE, VINYL NON FIRE

	ячейки	Размер		Величина	нагрузки
Серия	настила,	настила, мм	Вид нагрузки на настил	предельная, не менее	нормативная
			Равномерно распределенная q, кг/м ²	6118,20	2039,40
	19x38x38	2400x1200x38	Линейная q, кг/п.м	3059,10	1019,70
			Сосредоточенная Р, кг	3568,95	1190,00
			Равномерно распределенная q, кг/м ²	3263,04	1088,02
	38x38x26	2400x1200x26	Линейная q, кг/п.м	2039,40	680,14
			Сосредоточенная Р, кг	2447,28	815,76
ICO NON			Равномерно распределенная q, кг/м ²	5608,35	1869,11
ISO NON FIRE	38x38x30	2400x1200x30	Линейная q, кг/п.м	2549,25	849,41
FIRE			Сосредоточенная Р, кг	3059,10	1019,70
			Равномерно распределенная q, кг/м ²	6628,05	2141,37
	38x38x38	2400x1200x38	Линейная q, кг/п.м	3568,95	1190,00
			Сосредоточенная Р, кг	3059,10	1019,70
			Равномерно распределенная q, кг/м ²	10197,00	3365,01
	51x51x51	2400x1200x51	Линейная q, кг/п.м	6628,05	2209,69
			Сосредоточенная Р, кг	7137,90	2378,96

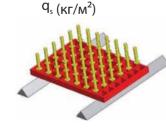
Серия	ячейки настила,	Размер настила, мм	Вид нагрузки на настил	Величина предельная, не менее	нагрузки нормативная
	19x38x38	2400x1200x38	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	5098,50 2549,25 2549,25	1699,84 849,41 849,41
	38x38x26	2400x1200x26	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	2753,19 1733,49 2039,40	917,73 578,17 680,14
FOOD NON FIRE	38x38x30	2400x1200x30	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	4588,65 2243,34 2549,25	1529,55 747,44 849,41
	38x38x38	2400x1200x38	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	5608,35 2753,19 2549,25	1869,11 917,73 849,41
	51x51x51	2400x1200x51	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	8667,45 5608,35 5608,35	2888,81 1869,11 1869,11
	19x38x38	2400x1200x38	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	13256,10 6628,05 7137,90	4418,36 2209,69 2378,96
	38x38x26	2400x1200x26	Равномерно распределенная q, кг/м² Линейная q, кг/п.м Сосредоточенная P, кг	6628,05 4384,71 5098,50	2209,69 1461,23 1699,84
VINYL NON FIRE	38x38x30	2400x1200x30	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	11216,70 5608,35 6118,20	3739,24 1869,11 2039,40
	38x38x38	2400x1200x38	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	13256,10 7137,90 6628,05	4418,36 2378,96 2209,69
	51x51x51	2400x1200x51	Равномерно распределенная q, кг/м ² Линейная q, кг/п.м Сосредоточенная P, кг	20394,00 13765,95 14275,80	6798,34 4588,65 4758,94

Здесь показаны данные о концентрированной нагрузке, вызывающей прогиб в 1% на определенном расстоянии между опорами. Нагрузка осуществляется на центр всей панели, которая поддерживается с двух сторон опорами. Решетки, имеющие больше чем две опоры, соответственно будут иметь меньший прогиб. Представленные данные действительны только для цельных необрезанных панелей. Если приведены другие показатели прогибов, необходимо умножить приведенное процентное значение прогиба на данные 1% нагрузки.

Показатели нагрузок при опирании по периметру. Серии: ECONOM NON FIRE, ECONOM STANDART

	ячейки	Размер		Величина	нагрузки
Серия	настила,	настила, мм	Вид нагрузки на настил	предельная, не менее	нормативная
			Равномерно распределенная q, кг/м ²	8157,60	2719,54
	19x38x38	2400x1200x38	Линейная q, кг/п.м	4078,80	1359,26
			Сосредоточенная Р, кг	4588,65	1529,55
			Равномерно распределенная q, кг/м²	4078,80	1359,26
	38x38x26	2400x1200x26	Линейная q, кг/п.м	2753,19	917,73
			Сосредоточенная Р, кг	3059,10	1019,70
ECONOM	38x38x30		Равномерно распределенная q, кг/м²	7137,90	2378,96
NON FIRE		2400x1200x30	Линейная q, кг/п.м	3568,95	1190,00
HOITTIKE			Сосредоточенная Р, кг	3772,89	1257,29
	38x38x38		Равномерно распределенная q, кг/м²	8667,45	2888,81
		2400x1200x38	Линейная q, кг/п.м	4588,65	1529,55
			Сосредоточенная Р, кг	4078,80	1359,26
	51x51x51		Равномерно распределенная q, кг/м²	13256,10	4418,36
		2400x1200x51	Линейная q, кг/п.м	8667,45	2888,81
			Сосредоточенная Р, кг	9177,30	3059,10
	19x38x38		Равномерно распределенная q, кг/м ²	9177,30	3059,10
		2400x1200x38	Линейная q, кг/п.м	4588,65	1529,55
			Сосредоточенная Р, кг	5098,50	1699,84
			Равномерно распределенная q, кг/м²	4588,65	1529,55
	38x38x26	2400x1200x26	Линейная q, кг/п.м	3059,10	1019,70
			Сосредоточенная Р, кг	3568,95	1190,00
ECONOM			Равномерно распределенная q, кг/м²	8157,60	2719,54
STANDART	38x38x30	2400x1200x30	Линейная q, кг/п.м	3772,89	1257,29
			Сосредоточенная Р, кг	4282,74	1427,58
			Равномерно распределенная q, кг/м ²	9177,30	3059,10
	38x38x38	2400x1200x38	Линейная q, кг/п.м	5098,50	1699,84
			Сосредоточенная Р, кг	4588,65	1529,55
	E4 E4 E4	0.400 4000 = :	Равномерно распределенная q, кг/м²	15295,50	5098,50
	51x51x51	2400x1200x51	Линейная q, кг/п.м	9687,15	3229,39
			Сосредоточенная Р, кг	10197,00	3398,66

Ударная нагрузка


Тип настила из смолы ISO NON FIRE	Падение твердого тела массой 32 кг с высоты, при которой настил не разрушится, м, не менее
51x51x51	4,0
38x38x38	3,0
38x38x30	2,5
38x38x26	2,0
19x38x38	3,0
19x38x30	2,5

Равномерная нагрузка

Здесь показаны данные прогибов при равномерной нагрузке:

- ullet что вызывает прогиб в 1%, на определенном расстоянии между двумя опорами
- рекомендованная максимальная нагрузка
- предельная нагрузка

Представленные данные действительны также и для не цельных, обрезанных панелей. Если приведены другие величины прогибов, необходимо умножить приведенное процентное значение прогиба на данные 1% нагрузки для определения максимальной нагрузки. Для расчета прогибов при рекомендованной максимальной нагрузке и предельной нагрузке можно использовать тот же метод расчета. Прогиб пропорционален нагрузке.

Показатели прогибов для решеток GFK, размером 38x38x26

			Равномерн	ю распредел	енная нагр	узка (кг/м²)	
		Концентрированная нагрузка [кг]		Рекомендованный максимум		Предельная нагрузка	Линейная нагрузка [кг/305 мм]
Размеры [мм]	Расстояние между опорами [мм]	1% отклонения	1% отклонения	ECONOM STANDART, ECONOM NON FIRE, ISO NON FIRE, FOOD NON FIRE	VINYL NON FIRE		1% отклонения
	300	1136	7347	7956	15545	34800	506
	400	738	3214	4478	8746	19744	288
38	500	529	1693	2868	5598	12721	186
38	600	402	1002	1992	3888	8882	130
28	700	319	644	1464	2857	6556	96
	800	261	438	1121	2187	5039	74
* *	900	219	313	886	1728	3996	59
	1000	187	231	718	1400	3247	48
Отверстие: 38х38	1100	162	176	594	1157	2691	40
Толщина: 26	1200	141	137	499	972	2267	33
	1300	116	109	425	829	1936	26
	1400	96	88	367	714	1673	-
	1500	81	72	319	622	1461	-

Показатели прогибов для решеток GFK, размерами 19x19x30, 38x38x30

Показатели прогибов для решеток GFK, размерами 19x19x30, 38x38x30							
			Равномерн	о распределе	енная наг	рузка [кг/м2]	
	Концентрированная нагрузка [кг]			Рекомендованный максимум		Предельная нагрузка	Линейная нагрузка [кг/305 мм]
Размеры [мм]	Расстояние между опорами[мм]	1% отклонения	1% отклонения	ECONOM STANDART, ECONOM NON FIRE, ISO NON FIRE, FOOD NON FIRE	VINYL NON FIRE		1% отклонения
	300	1400	14844	13379	26141	58519	865
38 30 73 30 77	400	998	6664	7989	15602	35223	518
	500	767	3581	5356	10455	23759	348
	600	619	2155	3863	7539	17223	251
	700	517	1403	2931	5717	13121	191
Отверстие: 19х19	800	441	968	2307	4499	10366	150
Толщина: 30	900	384	697	1868	3642	8421	122
38	950	361	600	1695	3306	7655	111
	1000	339	520	1546	3015	6992	101
30	1100	303	399	1304	2541	5910	85
"	1200	274	313	1115	2174	5069	73
Отверстие: 38х38	1300	249	250	966	1883	4401	63
Толщина: 30	1400	229	204	846	1649	3862	55

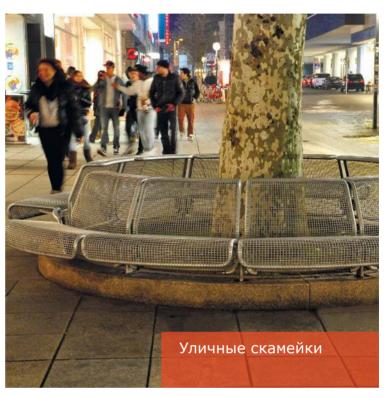
Показатели прогибов для литых решеток, размерами 38x38x38

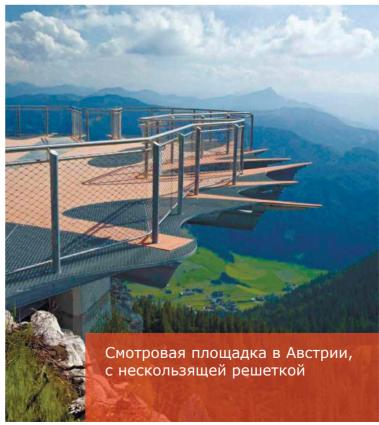
			Равномерно распределенная нагрузка (кг/м²)				
		Концентрированная нагрузка [кг]		Рекоменд макси		Предельная нагрузка	Линейная нагрузка [кг/305 мм]
Размеры [мм]	Размеры [мм] Расстояние между опорами [мм]		1% отклонения	ECONOM STANDART, ECONOM NON FIRE, ISO NON FIRE, FOOD NON FIRE	VINYL NON FIRE		1% отклонения
	300	2190	26809	14278	38807	61369	1288
	400	1533	10599	8031	21830	37082	758
20 🗪	500	1162	5163	5139	13971	25088	502
	600	927	2867	3569	9703	18231	359
38	700	765	1744	2622	7129	13918	270
	800	648	1135	2007	5458	11016	211
	900	560	776	1586	4312	8963	170
	1000	492	552	1285	3493	7453	140
	1100	437	406	1062	2887	6307	117
Отверстие: 38x38 Толщина: 38	1200	389	305	892	2426	5416	100
. 57.47.1161. 00	1300	325	217	760	2067	4708	86
	1400	275	182	655	1782	4135	75
	1500	236	146	571	1553	3664	66

Показатели прогибов для литых решеток, размерами 50х50х50							
			Равномерно распределенная нагрузка (кг/м²)				
		Концентрированная нагрузка [кг]		Рекомендованный максимум		Предельная нагрузка	Линейная нагрузка [кг/305 мм]
Размеры [мм]	Расстояние между опорами [мм]	1% отклонения	1% отклонения	ECONOM STANDART, ECONOM NON FIRE, ISO NON FIRE, FOOD NON FIRE	VINYL NON FIRE		1% отклонения
	300	2734	46840	31583	31583	54419	2618
	400	2077	18922	17766	17766	37886	1593
50	500	1677	9371	11371	11371	26722	1084
550	600	1409	5278	7897	7897	20091	791
50	700	1216	3247	5802	5802	15786	606
	800	1070	2132	4442	4442	12810	481
	900	956	1472	3510	3510	10654	393
	1000	864	1056	2843	2843	9035	328
Отверстие: 50х50	1100	789	782	2350	2350	7784	278
Толщина: 50	1200	720	590	1974	1974	6793	239
	1300	616	423	1682	1682	5994	208
	1400	533	357	1451	1541	5337	183
	1500	466	287	1264	1264	4791	163

Инновации в применении ячеистой решетки: архитектура и дизайн

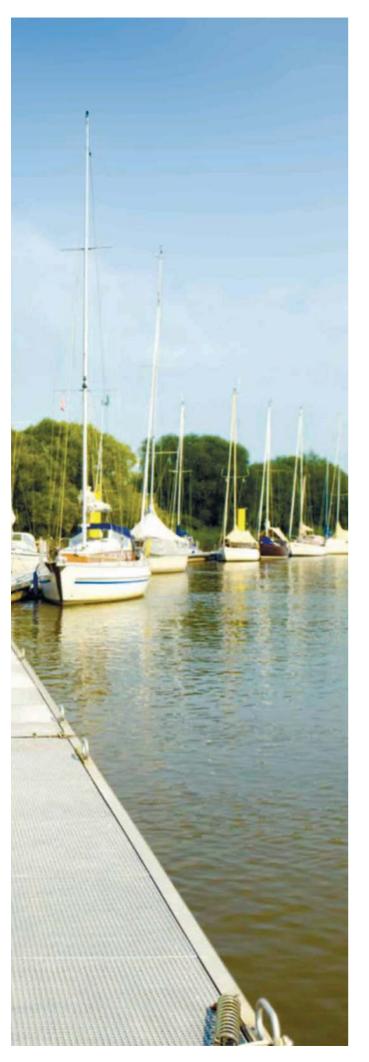
Первым значимым объектом из металла, изменившим мнение о металлоконструкциях в архитектуре, по праву можно считать творение Густава Эйфеля. Сейчас эта башня - самая узнаваемая архитектурная достопримечательность Парижа, всемиризвестная как символ Франции, названная в честь своего конструктора.





Со временем декоративные металлоконструкции прочно вошли в повседневную жизнь, так как помимо декоративной функции они достойно выдерживают большие механические нагрузки.

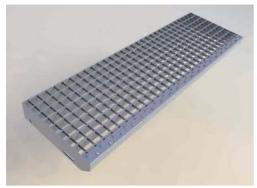



Что касается решёток для деревьев, то здесь речь идёт о специальном виде прессованной решётки. Решётки для деревьев применяются как бесшовная пешеходная дорожка с целью увеличения площади, по которой можно ходить. Они позволяют осуществлять уход, гарантируют вентиляцию, орошение приствольной зоны, и защиту корневой системы.

Лестничные конструкции

Весьма важными элементами на промышленных объектах и предприятиях обслуживания и в жилых помещениях являются лестницы. Они должны обладать высокими эксплуатационными качествами, среди которых ведущую роль играет безопасность.

Мы предлагаем лестничные ступени и лестничные конструкции из решетчатого настила, так как данный материал отвечает всем требованиям, предъявляемым к эксплуатации:


- устойчивость к механическим воздействиям
- высокая прочность
- износостойкость
- устойчивость к температурным перепадам и любым атмосферным воздействиям
- безопасность и надежность в использовании
- эстетика исполнения

Прямые лестницы, ступени

Наиболее употребительные размеры ячеек 33x33 Возможно изготовление с ячейками 33х11; 33х22

Маркировка ступеней из прессованной решетки

Ступень«Р» 30/2; 33x11; Zn; 600x240

```
«Р» - обозначает, что ступень из пресс
ованного настила
```

«30/2» - высота и толщина несущей полосы «33х11» - размер ячеек, где 33 - шаг несущей

полосы, 11 - шаг связующей полосы

- покрытие горячим цинком, может быть обозначение «С» - без покрытия,

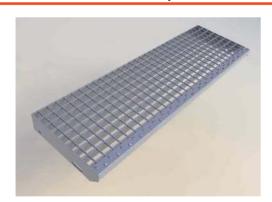
«Lac» - окрашена, если материал нержавейка это прописывается отдельно, нержавейка идет без какого либо покрытия.

«600» - длина несущей полосы, длина ступени

«240» - длина связующей полосы, ширина ступени

Краткое описание

Применение:


- Лестничные марши на промышленных и коммерческих объектах
- Пожарные лестницы
- Лестницы в подвальных помещениях
- Лестницы для выхода на чердак

Наиболее употребительные типоразмеры:

- Ступень«Р» 30/2; 33x33; Zn; 600x240
- Ступень«Р» 30/2; 33х33; Zn; 600х270

- Ступень«Р» 30/2; 33х33; Zn; 700х240 Ступень«Р» 30/2; 33х33; Zn; 700х270 Ступень«Р» 30/2; 33х33; Zn; 800х240
- Ступень«Р» 30/2; 33х33; Zn; 800х270 Ступень«Р» 30/3; 33х33; Zn; 600х240 Ступень«Р» 30/3; 33х33; Zn; 600х270
- Ступень«Р» 30/3; 33х33; Zn; 700х240 Ступень«Р» 30/3; 33х33; Zn; 700х270 Ступень«Р» 30/3; 33х33; Zn; 800х240

- Ступень«Р» 30/3; 33x33; Zn; 800x270
- Ступень«Р» 30/3; 33х33; Zn; 800х305 Ступень«Р» 30/3; 33х33; Zn; 900х240
- Ступень«Р» 30/3; 33х33; Zn; 900х270
- Ступень«Р» 30/3; 33x33; Zn; 900x305 Ступень«Р» 30/3; 33x33; Zn; 1000x240
- Ступень«Р» 30/3; 33x33; Zn; 1000x270
- Ступень«Р» 30/3; 33x33; Zn; 1000x305 Ступень«Р» 40/3; 33x33; Zn; 1000x270
- Ступень«Р» 40/3; 33x33; Zn; 1000x305
- Ступень«Р» 40/3; 33х33; Zn; 1100х270 Ступень«Р» 40/3; 33х33; Zn; 1100х305
- Ступень«Р» 40/3; 33x33; Zn; 1200x270 - Ступень«Р» 40/3; 33x33; Zn; 1200x305
- Лестничные ступени из сварного настила общие сведения

Маркировка ступеней из сварной решетки

Ступень«SP» 30/3; 34x38; Zn; 600x240

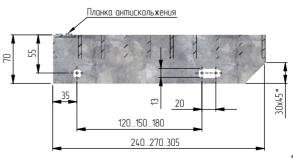
«Р» - обозначает, что ступень из сварного

«30/3» - высота и толщина несущей полосы «34x38» - размер ячеек, где 33 - шаг несущей полосы, 11 - шаг связующей полосы

- покрытие горячим цинком, может быть обозначение «С» - без покрытия,

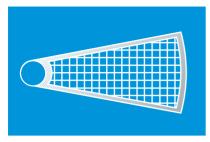
«Lac» - окрашена, «600» - длина несущей полосы, длина ступени

«240» - длина связующей полосы, ширина

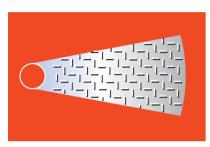

Краткое описание

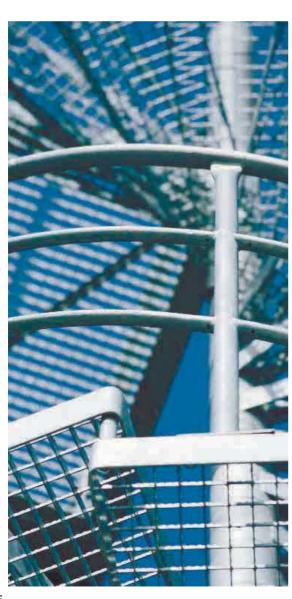
Применение:

- Лестничные марши на промышленных и коммерческих объектах
- Пожарные лестницы
- Лестницы в подвальных помещениях
- Лестницы для выхода на чердак

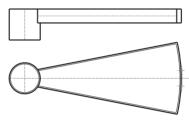

Наиболее употребительные типоразмеры:

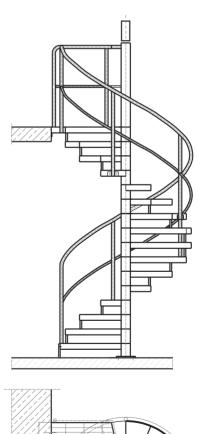
- Ступень «SP» 30/3; 34x38; Zn; 600x240
- Ступень«SP» 30/3; 34x38; Zn; 600x270 Ступень«SP» 30/3; 34x38; Zn; 800x240
- Ступень«SP» 30/3; 34x38; Zn; 800x270
- Ступень«SP» 30/3; 34x38; Zn; 800x305 Ступень«SP» 30/3; 34x38; Zn; 800x240
- Ступень«SP» 30/3; 34x38; Zn; 800x270
- Ступень«SP» 30/3; 34x38; Zn; 800x305

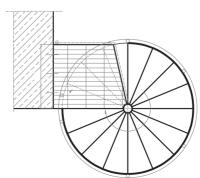



Винтовые лестницы, ступени

• ячеистая решётка 30 х 30 в противоскользящем варианте, оцинкованная или из нержавеющей стали

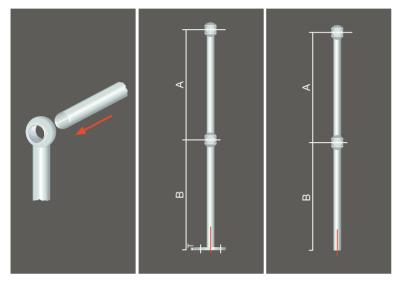


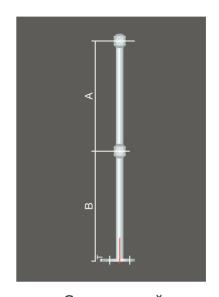

• оцинкованная жесть с тиснением в виде уголков или нержавеющая сталь



Снаружи логично использовать материалы, обладающие стойкостью к различным погодным воздействиям и даже, будучи мокрыми или что ещё хуже, покрытыми льдом и снегом, обеспечивающими необходимую безопасность при наступании ногой. Внутри помещений допустимы варианты оформления и материалы, ориентированные больше на вкус заказчика и общую архитектурную концепцию внутреннего убранства.

Размеры ступеней под заказ



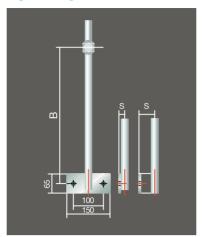

Перила и ограждения

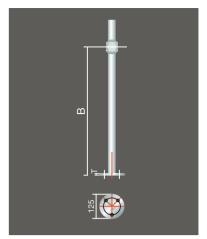
Мы предлагаем оцинкованные системы перил и ограждений, которые выпускаются в двух видах: полые и литые. Поставки осуществляются как в стандартном комплекте (с опорными пластинами), так и в качестве обычных стоек (без опорных пластин).

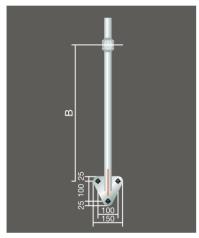
Полые модели производятся из стержня полого профиля с круглым поперечным сечением, к которому привариваются полые соединительные узлы. Преимущество полых моделей заключается в том, что они выдерживают такую же нагрузку, что и модели

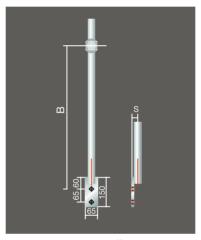
Основные элементы узел и труба

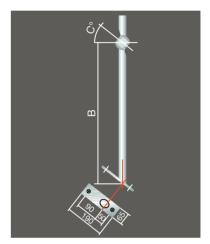
Стандартный


Стандартные перила			интер	Рекомендов вал для 110 ких стандарт	0 мм		
Тип		Стойка	Узел	Отверстие	220 Н/м	360 Н/м	740 Н/м
			Тип 1	/ 2/5/angula	r		
Полый	TL	Ø 33,7 мм	65 мм	36 мм	1300 мм	790 мм	385 мм
	TM	Ø 42,4 мм	82 мм	45 мм	2186 мм	1336 мм	650 мм
	TH	Ø 48,3 мм	94 мм	50 мм	2919 мм	1784 мм	868 мм
Литой	SL	Ø 32 мм	60 мм	36 мм	1934 мм	1182 мм	575 мм
	SH	Ø 40 мм	70 мм	45 мм	3771 мм	2305 мм	1121 мм
			Тип 3	3/4/6/7			
Полый	TL	Ø 33,7 мм	65 мм	36 мм	1230 мм	752 мм	366 мм
	TM	Ø 42,4 мм	82 мм	45 мм	2073 мм	1267 мм	616 мм
	TH	Ø 48,3 мм	94 мм	50 мм	2768 мм	1691 мм	823 мм
Литой	SL	Ø 32 мм	60 мм	36 мм	1834 мм	1121 мм	545 мм
	SH	Ø 40 мм	70 мм	45 мм	3576 мм	2186 мм	1063 мм


Выбор опорной пластины


Тип 1 и 2 горизонтальный, Прямоугольная опорная пластина


Тип 3 и 4 вертикальный, опорная пластина для горизонтального крепления к стенам и т.п.


Тип 5 горизонтальный, круглая опорная пластина

Тип 6 вертикальный, треугольная опорная пластина для горизонтального крепления к стенам и т.п.

Тип 7 маленький, вертикальная опорная пластина для бокового крепления к стенам и т.п.

Виды угловых опорных пластин к углу для крепления к откосам

из литых материалов, но при этом позволяют сделать цены более привлекательными, благодаря меньшему расходу материала.

Литые модели производятся из литых компонентов, данные модели проявляют большую устойчивость к экстремально агрессивным средам в таких областях как канализационное обслуживание и ограждения для причалов. Оба вида могут быть произведены в конфигурации с одним, или несколькими соединительными узлами.

Системы промышленных перил устроены принципиально просто. Вертикальный элемент состоит из металлической стойки с одним или несколькими узлами крепления, и опорной пластины. Поперечная труба крепится при

помощи поставляемых в комплекте соединительных узлов, и - все, перила готовы.

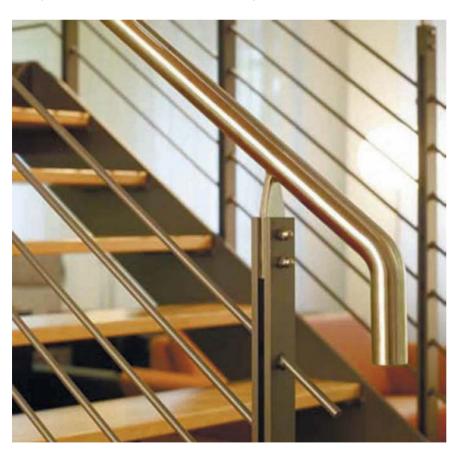
Так как модульный метод сборки наших систем очень легок, области их использования практически не ограничены. Технически стандартный дизайн позволяет применять наши перильные системы для использования в промышленных зданиях, в производственных магазинах, на стальных строительных лесах или в портах, а также в современной архитектуре или в отделке помещения.

Оцинкованная сталь дает перилам дополнительную защиту, если речь идет о металлоконструкциях системах, подвергаемых неблагоприятным факторам. Таким образом достигается антикоррозийная защита.

Приобретение систем промышленных перил - это не только сокращение материальных затрат, но так же экономия времени при монтаже/демонтаже.

Стандартные перила поставляются с опорными пластинами толщиной 12 мм; пластины толщиной 15 мм изготавливаются на заказ. Связующие узлы для стандартных перил поставляются просверленными, с резьбой и винтами. Трубчатые элементы поставляются без отверстий и болтов.

Это важно


Заказывая боковые перила со срезами, пожалуйста, указывайте левые правые стороны.

Направляя заказ, пожалуйста, учитывайте следующие детали:

- Тип (полые или литые) • Диаметр стойки
- Диаметр узла
- Диаметр трубки
- Прямые или со срезами
- Центр узла креп.
- Опорную пластину
- Высоту
- Количество
- Отделку

Для заметок

Для заметок		

Для заметок

Екатеринбург

г. Екатеринбург, ул. Фронтовых бригад 15,

въезд 1, склад/офис 41

Телефон: +7 (343) 286-02-30, +7 (912) 22-55-805

Факс: +7 (343) 286-02-30 E-mail: ekat@aquastok.ru

Казань

г. Казань, ул. Оренбургский тракт, 168 Телефон: +7 (843) 223-02-60, 223-02-20 Факс: +7 (843) 223-02-20

E-mail: kazan@aquastok.ru

Краснодар

г. Краснодар, ул. Круговая,26 Телефон: +7 (861) 279-61-37, 279-61-38

Факс: +7 (861) 279-61-37 E-mail: krasnodarop@aguastok.ru

Офис «Центр»: г. Москва, ул. Садовая-Спасская, дом 21/1, этаж 3, помещение №1, офисы №4 и №4а

E-mail: mos@aquastok.ru

Офис-склад «Одинцово»: Московская область,

г.Одинцово, ул.Внуковская, д.9

Телефон: +7 (495) 640-04-18, 640-04-19, 640-04-20

E-mail: moscow@aquastok.ru

Новосибирск

г. Новосибирск, Декабристов, 247 Телефон: +7 (383) 319-55-26 E-mail: novosibirsk@aquastok.ru

Пятигорск

г. Пятигорск, ул. Ермолова, 28 Телефон: +7 (988) 100-68-22

Ростов-на-Дону

г. Ростов-на-Дону, ул. Красноармейская, 5а Телефон: +7 (863) 267-66-49

Факс: +7 (863) 282-63-02 E-mail: rostov@aquastok.ru

Самара

г. Самара, ул. 1-й Безымянный переулок, 20 Телефон: +7 (846) 278-42-77, 229-97-37,

+7 (919) 800-48-82 Факс: +7 (846) 278-42-77 E-mail: samara@aquastok.ru

Санкт-Петербург

г. Санкт-Петербург, ул. Ворошилова д.2, офис 321 Телефон: 8 (812) 326-1077, 8 (812) 326-10-78,

+7 (911) 000-55-81

Факс: 8 (812) 326- 1077, 8 (812) 326-10-78

E-mail: spb@aquastok.ru

Ставрополь

г.Ставрополь, проспект Кулакова, д.17 "И",

офис.501

Телефон: +7 (8652) 33-48-28, 33-48-38

Факс: +7 (8652) 33-48-38 E-mail: stavropol@aquastok.ru

Адрес дилера в Вашем городе можно узнать на сайте www.promnastil.com

000 «Аквасток»

Производитель в праве уточнять и дополнять техническую информацию в данном каталоге без специального уведомления.

не по назначению или смонтированную с нарушением норм и инстукций по монтажу.

